摘要:
In order to provide a method of efficiently manufacturing an optical waveguide core having an endface inclined at a predetermined angle, the following method of manufacturing an optical waveguide core is employed. The method includes: a core material layer forming step of forming a core material layer formed of a photosensitive material on a surface of a cladding layer that has been formed on a substrate; a high refractive index substance covering step of covering a surface of the core material layer with a substance having a refractive index higher than 1 by bringing the high refractive index substance into close contact with the core material layer surface; an exposure step of pattern exposing the core material layer in a predetermined core-forming shape to from a core by irradiating the core material layer on a side covered with the high refractive index substance with exposure light inclined at a predetermined angle with respect to the cladding layer surface; a high refractive index substance removing step of removing the high refractive index substance from the surface of the core material layer exposed in the exposure step; and an development step of developing the core material layer from which the high refractive index substance has been removed in the high refractive index substance removing step so as to form the core having an inclined endface.
摘要:
In order to provide a method of efficiently manufacturing an optical waveguide core having an endface inclined at a predetermined angle, the following method of manufacturing an optical waveguide core is employed. The method includes: a core material layer forming step of forming a core material layer formed of a photosensitive material on a surface of a cladding layer that has been formed on a substrate; a high refractive index substance covering step of covering a surface of the core material layer with a substance having a refractive index higher than 1 by bringing the high refractive index substance into close contact with the core material layer surface; an exposure step of pattern exposing the core material layer in a predetermined core-forming shape to from a core by irradiating the core material layer on a side covered with the high refractive index substance with exposure light inclined at a predetermined angle with respect to the cladding layer surface; a high refractive index substance removing step of removing the high refractive index substance from the surface of the core material layer exposed in the exposure step; and an development step of developing the core material layer from which the high refractive index substance has been removed in the high refractive index substance removing step so as to form the core having an inclined endface.
摘要:
An optical waveguide of excellent flex resistance which is to be formed on the surface of a flexible printed circuit is obtained by using an epoxy resin composition includes (A) a liquid epoxy compound, (B) a solid epoxy compound, and (C) a cationic curing initiator, wherein as the liquid epoxy compound (A), (A1) a liquid epoxy compound represented by general formula (I) below is included: (where R1 and R2 are each independently a hydrogen atom or a methyl group; R3 to R6 are each independently a hydrogen atom, a methyl group, a chlorine atom or a bromine atom; R7 is an alkyleneoxy group or alkylene group of 1 to 15 carbons; p is 0 or 1; q is 1 to 25; r and s are 0 when p is 0, and are 1 when p is 1; and n is a positive integer which averages from 1 to 5).
摘要翻译:通过使用包含(A)液体环氧化合物,(B)固体环氧化合物和(C))的环氧树脂组合物,可以获得在柔性印刷电路板的表面上形成的具有优异抗弯曲性的光波导 阳离子性固化引发剂,其中,作为液状环氧化合物(A),(A1)由下述通式(I)表示的液体环氧化合物包括:(其中R 1和R 2各自独立地为氢原子或甲基; R 3〜 R6各自独立地为氢原子,甲基,氯原子或溴原子; R7为碳原子数1〜15的亚烷基氧基或亚烷基,p为0或1,q为1〜25,r和s分别为 当p为0时为0,当p为1时为1; n为1至5的平均值的正整数)。
摘要:
An optical waveguide of excellent flex resistance which is to be formed on the surface of a flexible printed circuit is obtained by using an epoxy resin composition includes (A) a liquid epoxy compound, (B) a solid epoxy compound, and (C) a cationic curing initiator, wherein as the liquid epoxy compound (A), (A1) a liquid epoxy compound represented by general formula (I) below is included: (where R1 and R2 are each independently a hydrogen atom or a methyl group; R3 to R6 are each independently a hydrogen atom, a methyl group, a chlorine atom or a bromine atom; R7 is an alkyleneoxy group or alkylene group of 1 to 15 carbons; p is 0 or 1; q is 1 to 25; r and s are 0 when p is 0, and are 1 when p is 1; and n is a positive integer which averages from 1 to 5).
摘要翻译:通过使用包含(A)液体环氧化合物,(B)固体环氧化合物和(C))的环氧树脂组合物,可以获得在柔性印刷电路板的表面上形成的具有优异抗弯曲性的光波导 阳离子性固化引发剂,其中,作为液状环氧化合物(A),(A1)由下述通式(I)表示的液体环氧化合物包括:(其中R 1和R 2各自独立地为氢原子或甲基; R 3〜 R6各自独立地为氢原子,甲基,氯原子或溴原子; R7为碳原子数1〜15的亚烷基氧基或亚烷基,p为0或1,q为1〜25,r和s分别为 当p为0时为0,当p为1时为1; n为1至5的平均值的正整数)。
摘要:
In order to provide a method of manufacturing an optical waveguide, which enables the formation of a smooth mirror face, the following method of manufacturing an optical waveguide having a mirror face is used. The method includes: a photocurable resin sheet laminating step of laminating an uncured photocurable resin sheet for forming a core on a surface of a first cladding layer that has been formed on a substrate; a mirror face forming step of forming a mirror face for guiding light to the core by pressing a die provided with a blade having, in a cross-section, a 45° inclined plane into the photocurable resin sheet; a core forming step of forming a core having the mirror face positioned at an end thereof by selectively exposing to light, and developing, the photocurable resin sheet; and a cladding layer forming step of forming a second cladding layer so as to bury the core.
摘要:
In order to provide a method of manufacturing an optical waveguide, which enables the formation of a smooth mirror face, the following method of manufacturing an optical waveguide having a mirror face is used. The method includes: a photocurable resin sheet laminating step of laminating an uncured photocurable resin sheet for forming a core on a surface of a first cladding layer that has been formed on a substrate; a mirror face forming step of forming a mirror face for guiding light to the core by pressing a die provided with a blade having, in a cross-section, a 45° inclined plane into the photocurable resin sheet; a core forming step of forming a core having the mirror face positioned at an end thereof by selectively exposing to light, and developing, the photocurable resin sheet; and a cladding layer forming step of forming a second cladding layer so as to bury the core.
摘要:
An aspect of the present invention is directed to a method for forming a mirror-reflecting film on a waveguide in an optical wiring board, characterized in that a multilayer film, in which a base, a metal layer and an adhesive layer are layered in this order, is used, and the metal layer is transferred and bonded to an inclined face for mirror-reflecting film formation provided on the waveguide, with the adhesive layer of the multilayer film intervening. The present invention provides a method which, when forming a mirror-reflecting film on a waveguide in an optical wiring board, enables inexpensive and easy formation of the mirror-reflecting film, using the smallest quantity of metal possible and employing comparatively simple facilities and techniques.
摘要:
An object is to manufacture an optical waveguide having low optical loss, by smoothing the surface of a core. To this end, a method for manufacturing an optical waveguide includes: a core-forming layer formation step of forming a core-forming layer of a photosensitive polymer on a surface of a lower cladding layer formed on a substrate; a smoothing step of smoothing the surface by lowering a surface viscosity thereof through a heat treatment of the core-forming layer; and a photocuring step of forming a core through selective exposure of the smoothed core-forming layer.
摘要:
An object is to manufacture an optical waveguide having low optical loss, by smoothing the surface of a core. To this end, a method for manufacturing an optical waveguide includes: a core-forming layer formation step of forming a core-forming layer of a photosensitive polymer on a surface of a lower cladding layer formed on a substrate; a smoothing step of smoothing the surface by lowering a surface viscosity thereof through a heat treatment of the core-forming layer; and a photocuring step of forming a core through selective exposure of the smoothed core-forming layer.
摘要:
An aspect of the present invention is directed to a method for forming a mirror-reflecting film on a waveguide in an optical wiring board, characterized in that a multilayer film, in which a base, a metal layer and an adhesive layer are layered in this order, is used, and the metal layer is transferred and bonded to an inclined face for mirror-reflecting film formation provided on the waveguide, with the adhesive layer of the multilayer film intervening. The present invention provides a method which, when forming a mirror-reflecting film on a waveguide in an optical wiring board, enables inexpensive and easy formation of the mirror-reflecting film, using the smallest quantity of metal possible and employing comparatively simple facilities and techniques.