Abstract:
In order to provide a method of efficiently manufacturing an optical waveguide core having an endface inclined at a predetermined angle, the following method of manufacturing an optical waveguide core is employed. The method includes: a core material layer forming step of forming a core material layer formed of a photosensitive material on a surface of a cladding layer that has been formed on a substrate; a high refractive index substance covering step of covering a surface of the core material layer with a substance having a refractive index higher than 1 by bringing the high refractive index substance into close contact with the core material layer surface; an exposure step of pattern exposing the core material layer in a predetermined core-forming shape to from a core by irradiating the core material layer on a side covered with the high refractive index substance with exposure light inclined at a predetermined angle with respect to the cladding layer surface; a high refractive index substance removing step of removing the high refractive index substance from the surface of the core material layer exposed in the exposure step; and an development step of developing the core material layer from which the high refractive index substance has been removed in the high refractive index substance removing step so as to form the core having an inclined endface.
Abstract:
Provided are a resin composition which offers both high transparency and a low linear expansion coefficient and can be used as a material for a dry film, and also a dry film obtained from this composition, an optical waveguide, and a photoelectric composite wiring board. The resin composition for an optical waveguide includes: (A) an epoxy resin constituted by a solid epoxy resin with one or less hydroxyl group in a molecule, and a liquid epoxy resin with one or less hydroxyl group in a molecule; (B) a curing agent with one or less hydroxyl group in a molecule; and (C) a nanosize silica sol, and contains no compound including two or more hydroxyl groups in a molecule as a resin component.
Abstract:
An aspect of the present invention is directed to a method for forming a mirror-reflecting film on a waveguide in an optical wiring board, characterized in that a multilayer film, in which a base, a metal layer and an adhesive layer are layered in this order, is used, and the metal layer is transferred and bonded to an inclined face for mirror-reflecting film formation provided on the waveguide, with the adhesive layer of the multilayer film intervening. The present invention provides a method which, when forming a mirror-reflecting film on a waveguide in an optical wiring board, enables inexpensive and easy formation of the mirror-reflecting film, using the smallest quantity of metal possible and employing comparatively simple facilities and techniques.
Abstract:
In a method for forming a photoelectric composite board (10) on which a photoelectric transducer (5) is mounted, photo-masks (111, 112, 113) which are used in processes to form the photoelectric composite board (10) are respectively disposed on the basis of a reference mark (33) previously formed on a metal thin film (101). In addition, openings (22) are formed on solder resist layers (8) by irradiating laser beams at positions defined on the basis of a reference point (4a) defined above a light deflector (4) formed on an end of a light guide (3).
Abstract:
A process of forming a deflection mirror in a light waveguide with a use of a dicing blade having a cutting end with a flat top cutting face and at least one slanted side cutting face. The process includes a cutting step of cutting a surface of the light waveguide to a depth not greater than a width of the flat top cutting face, thereby forming a groove in the surface of the light waveguide. The groove has a slanted surface which is formed by the slanted cutting face to define the deflection mirror in the waveguide.
Abstract:
An object is to manufacture an optical waveguide having low optical loss, by smoothing the surface of a core. To this end, a method for manufacturing an optical waveguide includes: a core-forming layer formation step of forming a core-forming layer of a photosensitive polymer on a surface of a lower cladding layer formed on a substrate; a smoothing step of smoothing the surface by lowering a surface viscosity thereof through a heat treatment of the core-forming layer; and a photocuring step of forming a core through selective exposure of the smoothed core-forming layer.
Abstract:
A material for an optical circuit-electrical circuit mixedly mounting substrate comprises a light permeable resin layer, and an optical circuit forming layer that is made of a light permeable resin of which refractive index increases (or decreases) when irradiated with an activating energy beam and is disposed adjacent to the light permeable resin layer, wherein a refractive index of a portion of the optical circuit forming layer is higher (or lower) than that of the light permeable resin layer when the material for the optical circuit-electrical circuit mixedly mounting substrate is irradiated with an activating energy beam so that said portion is irradiated.
Abstract:
A material for an optical circuit-electrical circuit mixedly mounting substrate comprises a light permeable resin layer, and an optical circuit forming layer that is made of a light permeable resin of which refractive index increases (or decreases) when irradiated with an activating energy beam and is disposed adjacent to the light permeable resin layer, wherein a refractive index of a portion of the optical circuit forming layer is higher (or lower) than that of the light permeable resin layer when the material for the optical circuit-electrical circuit mixedly mounting substrate is irradiated with an activating energy beam so that said portion is irradiated.
Abstract:
A mobile object combination detection apparatus includes a plurality of moving image input units, a plurality of mobile object detection units each connected to one of the moving image input units, and a combination determination unit. Each of the plurality of mobile object detection unit detects a mobile object at a predetermined position on a moving image inputted thereto from the moving image input unit, and sends detection information to the combination determination unit. The combination determination unit compares the detection information of the mobile object sent thereto from each of the mobile object detection unit with a predetermined condition to determine that a target mobile object is detected when the detection information satisfies the predetermined condition.
Abstract:
In a full-duplex data communication system, the signal-to-noise ratio, error rate and occurrences of out-of-sync condition of signals transmitted on the data channel of a first transmission medium from a first station to a second station are detected by the latter and a first set of quality signals of the first transmission medium is generated. The signal-to-noise ratio, error rate and occurrences of out-of-sync condition of signals transmitted on the data channel of a second transmission medium in the opposite direction are likewise detected by the first station and a second set of quality signals of the second transmission medium are generated. The first set of quality signals are modulated and transmitted on a control channel of the second transmission medium from the second station and received and demodulated by the first station, which derives a speed setting command signal from the second set of quality signals as well as from the first set of quality signals represented by the demodulated signals, and the transmission speed of the first station is controlled according to the speed setting command signal. The speed setting command signal is modulated and transmitted on a control channel of the first transmission medium from the first to second station, which demodulates it and controls its transmission speed according to the demodulated speed setting command signal.