Abstract:
A substrate transfer chamber for unloading the substrates from the containers includes a housing-shaped main body and a plurality of container connecting mechanisms to which the containers are connected. In the main body, some of the container connecting mechanisms are arranged on top of one another in a height direction of the main body.
Abstract:
Provided is a substrate processing apparatus that can suppress the amount of inert gas and dry gas used and also can prevent reductions in throughput. A substrate processing apparatus is provided with: a loader module; an opener that removes a cover from a FOUP having a main body, an opening and the cover, to communicate the inside of the FOUP with the inside of the loader module through the opening; an N2 gas supply unit that is attached to the loader module and supplies N2 gas to the inside of the FOUP; and two slide cover plates movable respectively along an opening surface of the opening. The slide cover plates move toward each other until the gap therebetween is 1 mm to 3 mm to shield the opening of the FOUP that is attached to the loader module from the inside of the loader module.
Abstract translation:提供一种能够抑制惰性气体和干燥气体的使用量的基板处理装置,能够防止生产量的降低。 基板处理装置具有:加载模块; 从具有主体,开口和盖子的FOUP移除盖的开启器,通过开口将FOUP的内部与装载机模块的内部连通; N 2气体供给单元,其附接到所述装载机模块并将N 2气体供给到所述FOUP的内部; 以及分别沿着开口的开口表面移动的两个滑动盖板。 滑动盖板朝向彼此移动,直到它们之间的间隙为1mm至3mm,以从装载机模块的内部屏蔽附接到装载机模块的FOUP的开口。
Abstract:
A transfer device is disposed in a vacuum transfer chamber. The transfer device includes a structure body having an inner space isolated from the vacuum transfer chamber, an arm that rotates with respect to the structure body, and a vacuum seal structure configured to airtightly seal a sliding portion between the structure body and the arm. Further, the vacuum seal structure includes one or more seal members disposed at the sliding portion; a sealing portion formed by the structure body, the arm, and the seal members, lubricant being sealed in the sealing portion; and a pressure adjusting unit configured to adjust a pressure in the sealing portion.
Abstract:
Four groups of a three-tier arrangement of processing units, each of the processing units being provided with two processing modules and a load lock module, are provided in the front and rear sides along a Y-guide extending rearward when viewed from an EFEM and in the left and right sides of the Y-guide. An exchange of a substrate between a delivery mechanism on the EFEM side and a substrate transfer mechanism on the processing unit side is performed by a substrate loading part, which is movable along the Y-guide and can move upward and downward, and on which a plurality of wafers can be placed in a shelf-like manner.
Abstract:
A container interchanging method is provided. The container interchanging method provides that a first container accommodating a processed substrate therein and a second container accommodating an unprocessed substrate therein are interchanged in a container connection mechanism of a substrate transfer chamber. The substrate transfer chamber includes the container connection mechanism to which the container accommodating the substrate is connected. The substrate transfer chamber is configured to unload the substrate from the container connected to the container connection mechanism. The substrate transfer chamber further includes a buffer configured to mount the container. When the first container and the second container are interchanged in the container connection mechanism, any one of the first container and the second container is temporarily stored in the buffer.
Abstract:
A load lock apparatus having a load lock chamber, which is connected to a vacuum transfer chamber configured to transfer a substrate under a vacuum pressure state via a communication hole which is opened and closed by a gate valve, and configured to be capable of switching an inner pressure into an atmospheric pressure state and the vacuum pressure state, is provided. The load lock apparatus includes a load lock chamber main body in which a substrate container having an attachable/detachable cover is carried, wherein the communication hole is formed in a side surface of the load lock chamber; and a cover attaching/detaching mechanism installed at a height position vertically arranged with the communication hole in the load lock chamber; and an elevating mechanism including a mounting table on which the substrate container is loaded and configured to lift and lower the mounting table.
Abstract:
There is provided a substrate detection apparatus of detecting whether or not a substrate is normally supported by a support part at a predetermined position, in a transfer device including the support part configured to support a plurality of disc-like substrates in multi-stage processing at vertical intervals. The substrate detection apparatus includes: a plurality of optical sensors, each of the plurality of optical sensors including a light transmitting part configured to irradiate a light and a light receiving part configured to receive the light from the light transmitting part, wherein at least one pair of the plurality of optical sensors are disposed such that the light from the light transmitting part is sequentially blocked at each of the plurality of disc-like substrates, during the plurality of disc-like substrates is collectively transferred while being normally supported by the support part at the predetermined positions.
Abstract:
A substrate transfer method is performed by a transfer unit including a first transfer arm and a second transfer arm which are separately movable and are overlapped with each other. A moving speed of each of the first transfer arm and the second transfer arm that is not transferring a substrate is set to be higher than a moving speed of each of the first transfer arm and the second transfer arm that is transferring a substrate.
Abstract:
A carrier transport device capable of delivering a carrier to and from an external transport device which transports the carrier is provided. The carrier transport device includes a housing on which the carrier is mountable, first ports provided in the housing and configured to deliver the carrier to and from the external transport device, second ports provided in the housing and provided with a lid opening/closing mechanism, and a transfer machine provided in the housing and configured to transfer the carrier. The first ports, the transfer machine and the second ports are disposed under a transport path of the external transport device. The first ports and the second ports are disposed on both sides of the transfer machine. The second ports are configured at multiple stages.
Abstract:
A substrate transfer chamber for unloading the substrates from the containers includes a housing-shaped main body and a plurality of container connecting mechanisms to which the containers are connected. In the main body, some of the container connecting mechanisms are arranged on top of one another in a height direction of the main body.