摘要:
An electrode mounting structure of a surface treatment apparatus in which a metal electrode is disposed so as to oppose to an inner-peripheral surface of a cylinder, the electrode and the cylinder are energized in a state where treatment liquid is interposed between the electrode and the cylinder inner-peripheral surface so as to perform pre-plating or plating to the cylinder inner-peripheral surface, and the metal electrode is detachably attached to a metal electrode holder member. The structure includes a resin coupler having a threaded portion engaged with a threaded portion formed on the electrode holder member.
摘要:
An electrode mounting structure of a surface treatment apparatus in which a metal electrode is disposed so as to oppose to an inner-peripheral surface of a cylinder, the electrode and the cylinder are energized in a state where treatment liquid is interposed between the electrode and the cylinder inner-peripheral surface so as to perform pre-plating or plating to the cylinder inner-peripheral surface, and the metal electrode is detachably attached to a metal electrode holder member. The structure includes a resin coupler having a threaded portion engaged with a threaded portion formed on the electrode holder member.
摘要:
This invention provides compounds having antiviral activities especially inhibiting activity for influenza virus, more preferably provides substituted 3-hydroxy-4-pyridone derivatives having cap-dependent endonuclease inhibitory activity.
摘要:
There is disclosed a method for manufacturing an SOI wafer comprising at least: implanting a hydrogen ion, a rare gas ion, or both the ions into a donor wafer formed of a silicon wafer or a silicon wafer having an oxide film formed on a surface thereof from a surface of the donor wafer, thereby forming an ion implanted layer; performing a plasma activation treatment with respect to at least one of an ion implanted surface of the donor wafer and a surface of a handle wafer, the surface of the handle wafer is to be bonded to the ion implanted surface; closely bonding these surfaces to each other; mechanically delaminating the donor wafer at the ion implanted layer as a boundary and thereby reducing a film thickness thereof to provide an SOI layer, and performing a heat treatment at 600 to 1000° C.; and polishing a surface of the SOI layer for 10 to 50 nm based on chemical mechanical polishing.A method for manufacturing with excellent productivity an SOI wafer having an SOI layer with a mirror-finished surface and high film thickness uniformity can be provided.
摘要:
This invention provides compounds having antiviral activities especially inhibiting activity for influenza virus, more preferably provides substituted 3-hydroxy-4-pyridone derivatives having cap-dependent endonuclease inhibitory activity.
摘要:
A method for producing a single crystal silicon solar cell including the steps of: implanting ions into a single crystal silicon substrate through an ion implanting surface thereof; closely contacting the single crystal silicon substrate and a transparent insulator substrate with each other via a transparent electroconductive adhesive while using the ion implanting surface as a bonding surface; curing and maturing the transparent electroconductive adhesive into a transparent electroconductive film; applying an impact to the ion implanted layer to mechanically delaminate the single crystal silicon substrate to leave a single crystal silicon layer; and forming a p-n junction in the single crystal silicon layer.
摘要:
Provided is a method for manufacturing a bonded wafer with a good thin film over the entire substrate surface, especially in the vicinity of the lamination terminal point. The method for manufacturing a bonded wafer comprises at least the following steps of: forming an ion-implanted region by implanting a hydrogen ion or a rare gas ion, or the both types of ions from a surface of a first substrate which is a semiconductor substrate; subjecting at least one of an ion-implanted surface of the first substrate and a surface of a second substrate to be attached to a surface activation treatment; laminating the ion-implanted surface of the first substrate and the surface of the second substrate in an atmosphere with a humidity of 30% or less and/or a moisture content of 6 g/m3 or less; and a splitting the first substrate at the ion-implanted region so as to reduce thickness of the first substrate, thereby manufacturing a bonded wafer with a thin film on the second substrate.
摘要翻译:提供一种在整个基板表面上,特别是在层叠终点附近制造具有良好薄膜的接合晶片的方法。 制造接合晶片的方法至少包括以下步骤:通过从作为半导体衬底的第一衬底的表面注入氢离子或稀有气体离子或两种离子形成离子注入区域 ; 对第一基板的离子注入表面和第二基板的表面中的至少一个进行表面活化处理; 将第一基板的离子注入表面和第二基板的表面在湿度为30%以下和/或6g / m 3以下的气氛中层压; 以及在离子注入区域处分裂第一衬底以便减小第一衬底的厚度,由此在第二衬底上制造具有薄膜的接合晶片。
摘要:
Wettability of a PBN material surface with respect to a metal is improved to expand use applications. Hydrogen ions are implanted into a surface of a silicon substrate 10 to form an ion implanted region 11 at a predetermined depth near a surface of the silicon substrate 10, and a plasma treatment or an ozone treatment is performed with respect to a main surface of the silicon substrate 10 for the purpose of surface cleaning or surface activation. The main surfaces of the silicon substrate 10 and a PBN substrate 20 subjected to the surface treatment are appressed against each other to be bonded at a room temperature, and an external impact shock is given to the bonded substrate to mechanically delaminate a silicon film 12 from a bulk 13 of the silicon substrate to be transferred. An obtained PBN composite substrate 30 is diced to form a chip having a desired size, and a refractory metal is metallized on the silicon film 12 side to be connected with a wiring material.
摘要:
Hydrogen ions are implanted to a surface (main surface) of the single crystal Si substrate 10 at a dosage of 1.5×1017 atoms/cm2 or higher to form the hydrogen ion implanted layer (ion-implanted damage layer) 11. As a result of the hydrogen ion implantation, the hydrogen ion implanted boundary 12 is formed. The single crystal Si substrate 10 and the low melting glass substrate 20 are bonded together. The bonded substrate is heated at relatively low temperature, 120° C. or higher and 250° C. or lower (below a melting point of the support substrate). Further, an external shock is applied to delaminate the Si crystal film along the hydrogen ion implanted boundary 12 of the single crystal Si substrate 10 out of the heat-treated bonded substrate. Then, the surface of the resultant silicon thin film 13 is polished to remove a damaged portion, so that a semiconductor substrate can be fabricated. There can be provided a semiconductor substrate in which a high-quality silicon thin film is transferred onto a substrate made of a low melting point material.
摘要翻译:将氢离子以1.5×10 17原子/ cm 2或更高的剂量注入单晶Si衬底10的表面(主表面),以形成氢离子注入层(离子注入损伤层)11。 氢离子注入,形成氢离子注入边界12。 单晶Si衬底10和低熔点玻璃衬底20结合在一起。 键合衬底在相对较低的温度,120℃或更高和250℃或更低(低于支撑衬底的熔点)下加热。 此外,施加外部冲击以沿着经热处理的键合衬底的单晶Si衬底10的氢离子注入边界12将Si晶体膜分层。 然后,对所得的硅薄膜13的表面进行抛光以去除损坏部分,从而可以制造半导体衬底。 可以提供一种半导体衬底,其中将高质量的硅薄膜转移到由低熔点材料制成的衬底上。
摘要:
To provide a method of manufacturing a laminated wafer by which a strong coupling is achieved between wafers made of different materials having a large difference in thermal expansion coefficient without lowering a maximum heat treatment temperature as well as in which cracks or chips of the wafer does not occur. A method of manufacturing a laminated wafer 7 by forming a silicon film layer on a surface 4 of an insulating substrate 3 comprising the steps in the following order of: applying a surface activation treatment to both a surface 2 of a silicon wafer 1 or a silicon wafer 1 to which an oxide film is layered and a surface 4 of the insulating substrate 3 followed by laminating in an atmosphere of temperature exceeding 50° C. and lower than 300° C., applying a heat treatment to a laminated wafer 5 at a temperature of 200° C. to 350° C., and thinning the silicon wafer 1 by a combination of grinding, etching and polishing to form a silicon film layer.