摘要:
An electrical conductive member includes: an electrical conductive structure including: a substrate (31, 152, 252, 352, 452); an electrical conductive carbon layer (33, 155, 254, 354, 454) provided on at least one surface of the substrate and containing electrical conductive carbon; and a middle layer (32, 154, 256, 356, 456) interposed between the substrate and the electrical conductive carbon layer. An intensity ratio R (ID/IG) of a D-band peak intensity (ID) to a G-band peak intensity (IG) measured by a Raman scattering spectroscopic analysis in the electrical conductive carbon layer is 1.3 or more.
摘要:
An electrical conductive member includes: an electrical conductive structure including: a substrate; an electrical conductive carbon layer provided on at least one surface of the substrate and containing electrical conductive carbon; and a middle layer interposed between the substrate and the electrical conductive carbon layer. An intensity ratio R (ID/IG) of a D-band peak intensity (ID) to a G-band peak intensity (IG) measured by a Raman scattering spectroscopic analysis in the electrical conductive carbon layer is between 1.4 and 1.9.
摘要:
A sealing structure includes: components (1, 2, 11, 16, 21, 22, 33, 34, 44, 51, 52, 61, 62) respectively having sealing surfaces (8, 9, 14, 17, 30, 31, 42, 43, 49, 71, 72) on surfaces thereof facing each other; and a seal member (3, 18, 25, 37, 46, 50, 55, 65, 104, 105, 106, 140, 240) interposed between the sealing surfaces to make the sealing surfaces closely adhere to each other, and at least a hard carbon film (6, 7, 13, 28, 29, 40, 41, 48, 53, 54, 66, 67, 108, 120, 130, 220, 230, 320, 330, 430) is formed on one or both of the sealing surfaces.
摘要:
A sealing structure includes: components (1, 2, 11, 16, 21, 22, 33, 34, 44, 51, 52, 61, 62) respectively having sealing surfaces (8, 9, 14, 17, 30, 31, 42, 43, 49, 71, 72) on surfaces thereof facing each other; and a seal member (3, 18, 25, 37, 46, 50, 55, 65, 104, 105, 106, 140, 240) interposed between the sealing surfaces to make the sealing surfaces closely adhere to each other, and at least a hard carbon film (6, 7, 13, 28, 29, 40, 41, 48, 53, 54, 66, 67, 108, 120, 130, 220, 230, 320, 330, 430) is formed on one or both of the sealing surfaces.
摘要:
A fuel cell is provided with a membrane electrode assembly provided with a frame, both of which are sandwiched between two separators. The fuel cell is configured such that reactive gas is circulated between the frame and the separators. The frame and both separators each have manifold holes, the rims of the manifold holes of frame extend into the manifold holes in the separators, and protrusions cover the inner peripheral surfaces of the manifold holes in at least one of the separators. This structure makes possible the easy and accurate position and integration of the separators and the frame, and fuel cell miniaturization can be achieved because space to position the protrusions is not needed.
摘要:
An electrolyte membrane-electrode assembly of the present invention includes: an electrolyte membrane; an anode-side electrode including an anode-side catalyst layer disposed on one side of the electrolyte membrane and an anode-side gas diffusion layer formed on the anode-side catalyst layer beyond a surface-direction end of the anode-side catalyst layer; an anode-side adhesive layer disposed on at least a part of a periphery of the anode-side catalyst layer; and an anode-side gasket layer disposed in contact with the anode-side adhesive layer, wherein a surface-direction inner end of the anode-side adhesive lay is located inside beyond a surface-direction inner end of the anode-side gasket layer, and a part of the anode-side adhesive layer is located to overlap with a part of the anode-side gas diffusion layer with respect to a thickness direction. Further, on the other side of the electrolyte membrane, a cathode-side respective layers having the same constructions as above are disposed.
摘要:
A fuel cell stack is provided in which a plurality of single cells each including a membrane electrode assembly are stacked in a stacking direction. The fuel cell stack includes a plurality of electrical insulation members each connected to an outer peripheral portion of a corresponding one of the membrane electrode assemblies. The fuel cell stack further includes a first displacement absorbing member disposed between each insulation member and an adjacent insulation member.
摘要:
An aspect of the present invention provides a fuel cell apparatus that includes at least one fuel cell stack including a plurality of unit fuel cells, each unit fuel cell including a membrane electrode assembly including an electrolyte membrane and electrodes arranged on each side the electrode membrane, and a pair of separators sandwiching the membrane electrode assembly, a casing arranged and configured to accommodate the fuel cell stack, and at least one elastic member arranged part or whole of the circumference of the fuel cell stack in contact with an inner wall of the casing.
摘要:
Disclosed is a fuel cell provided with a membrane electrode structure having a frame, two separators that sandwich the membrane electrode structure therebetween, and gas seals between the end portion of the frame and the end portions of respective separators, and diffuser sections for distributing a reacting gas to between the frame and respective separators. In the diffuser section on the cathode side, the frame is provided with a protruding section in contact with the separator, and in the diffuser section on the anode side, the frame and the separator are disposed by being spaced apart from each other, thereby excellently maintaining contact surface pressure between the membrane electrode structure and the separators, and preventing contact resistance from being increased.
摘要:
An electrolyte membrane-electrode assembly of the present invention includes: an electrolyte membrane; an anode-side electrode including an anode-side catalyst layer disposed on one side of the electrolyte membrane and an anode-side gas diffusion layer formed on the anode-side catalyst layer beyond a surface-direction end of the anode-side catalyst layer; an anode-side adhesive layer disposed on at least a part of a periphery of the anode-side catalyst layer; and an anode-side gasket layer disposed in contact with the anode-side adhesive layer, wherein a surface-direction inner end of the anode-side adhesive lay is located inside beyond a surface-direction inner end of the anode-side gasket layer, and a part of the anode-side adhesive layer is located to overlap with a part of the anode-side gas diffusion layer with respect to a thickness direction. Further, on the other side of the electrolyte membrane, cathode-side respective layers having the same constructions as above are disposed.