摘要:
The present invention relates to a cationic electrodeposition coating composition comprising silica particles having pore volume of 0.44 to 1.8 ml/g and average particle size of no more than 10 μm, the composition showing square root of diffusion coefficient (√Tc) of no less than 2.5 upon diffusing a solution onto a coating film therewith; a cationic electrodeposition coating composition comprising silica particles having pore volume of 0.44 to 1.8 ml/g and average particle size of no more than 10 μm, wherein the composition shows minimum deposition pH of 11.90 to 12.00 during electrodeposition coating, and film resistance of 1,000 to 1,500 kΩ·cm2 at film thickness of 15 μm and applied voltage of 240 V; and an article coated with such cationic electrodeposition coating composition. Therefore, the present invention can also provide a coating film formed with the cationic electrodeposition coating composition which can ensure higher corrosion resistance and higher throwing power in addition to other excellent coating properties, even if the resulting coating has extremely thin film thickness (e.g., about 7 μm).
摘要:
The invention relates to a method for forming a multilayered coating film having a bright feel specific to a metallic coating film and a fineness of a luster color pigment with controlling the miscibility between each coating film when final coatings comprising an intermediate coating composition, a base coating composition and a clear coating composition are applied in this order by a wet-on-wet method to form coating films. The method for forming a multi-layered coating film comprises a step of applying an intermediate coating composition, a base coating composition and a clear coating composition in this order on a substrate formed with an electrodeposition coating film, and a step of baking and curing the applied three layers simultaneously, wherein the base coating composition contains crosslinking polymer microparticles and a nonaqueous dispersion resin.
摘要:
A method for forming a coated film comprising the steps of sequentially applying an intermediate coating material, a base coating material and a clear coating material on a substrate on which an electrodeposition coated film has been formed; and simultaneously curing the applied three layers by baking, wherein the intermediate coating material comprises: (a) 40 to 56% by weight of an urethane modified polyester resin, the urethane modified polyester resin being obtainable by polyaddition of: a hydroxyl group containing polyester resin which is obtainable by polycondensation of an acid ingredient including not less than 80% by mole of isophthalic acid with a polyhydric alcohol ingredient, with an aliphatic diisocyanate compound; (b) 10 to 30% by weight of a melamine resin; (c) 15 to 30% by weight of a blocked isocyanate compound; (d) 4 to 15% by weight of a nonaqueous dispersion resin having core-shell structure; and (e) 0.4 to 2 parts by weight of a flake-like pigment. The resulting layered coated film is superior in aesthetic appearance and chipping resistance even formed in the three-coating and one-baking method.
摘要:
In a process which is before a treatment process of forming a chemical conversion, TiO2 fine particles as an electron releasing-related substance (electron releasing substance) are attached onto a surface of a vehicle body. Then, a chemical conversion treatment is applied to the vehicle body having the TiO2 fine particles attached thereto. Thereby, an energy band gap of a finally-formed chemical conversion film can be smaller than that of a chemical conversion film formed by using only a chemical conversion treatment agent. Accordingly, the number of electrons (free electrons) which can be supplied onto the surface of a chemical conversion film can be increased during a voltage application in an electrodeposition coating process, and reducing reaction at a cathode can be promoted.
摘要:
The present invention relates to a cured electrodeposition coating film which can be applied on a substrate such as an automobile body.The cured electrodeposition coating film has a dynamic glass transition temperature of 105 to 120° C. and a crosslink density of 1.2×10−3 to 2.0×10−3 mole/cc, and phenol structural part represented with the formula: —C6H4—O— within a range of 0.12 to 0.24 mole in molar number based on a resin solid content of 100 g in the cured electrodeposition coating film. The cured electrodeposition coating film is obtained by conducting electrodeposition coating with a cationic electrodeposition coating composition, and then heating and curing it, wherein the cationic electrodeposition coating composition comprises, cationic epoxy resin (A) having bisphenol A-type structure in its molecule, cationic acrylic resin (B) obtainable by reacting an amino group containing compound with a copolymer obtainable by radical-copolymerization of a hydroxy group containing monomer, a glycidyl group containing monomer and another monomer, blocked isocyanate curing agent (C) which is obtained by blocking a cycloaliphatic isocyanate compound with an oxime compound, and a pigment.