摘要:
In a case where each of pixels of a liquid-crystal display panel is divided into two subpixels, the drive levels of the subpixels with respect to the gradation of an input video signal can be selected from among a plurality of drive levels while an increase in the circuit scale is suppressed.Thus, in the present invention, a first subpixel driving level converter for, on the basis of the gradation value of each pixel of the input video signal, obtaining a first gradation value for driving a first subpixel is provided, and the first subpixel is driven and controlled on the basis of the first gradation value. Then, the first gradation value obtained by the first subpixel driving level converter is converted into a luminance value, and a difference with the luminance value such that the gradation values of the whole pixels are converted is obtained. The obtained difference is converted into a gradation value, and a second gradation value for driving a second subpixel is obtained. The second subpixel is driven and controlled on the basis of the second gradation value.
摘要:
In a case where each of pixels of a liquid-crystal display panel is divided into two subpixels, the drive levels of the subpixels with respect to the gradation of an input video signal can be selected from among a plurality of drive levels while an increase in the circuit scale is suppressed.Thus, in the present invention, a first subpixel driving level converter for, on the basis of the gradation value of each pixel of the input video signal, obtaining a first gradation value for driving a first subpixel is provided, and the first subpixel is driven and controlled on the basis of the first gradation value. Then, the first gradation value obtained by the first subpixel driving level converter is converted into a luminance value, and a difference with the luminance value such that the gradation values of the whole pixels are converted is obtained. The obtained difference is converted into a gradation value, and a second gradation value for driving a second subpixel is obtained. The second subpixel is driven and controlled on the basis of the second gradation value.
摘要:
An LCD device includes a display unit including pixels having a multi-pixel structure; first and second driving units that drive scanning and signal lines, respectively; an image acquisition unit, and a control unit. Each of the pixels includes first and second pixels, and first and second pixels of pixels are connected to two corresponding signal lines in a checkerboard manner. The first driving unit is controlled to repeatedly scan a first sub-frame of odd lines and a second sub-frame of even lines, and the second driving unit is controlled in such a manner that the polarity of the first pixel of a pixel differs from that of the second pixel of the pixel, the polarities of the adjacent first pixels differ from each other and those of the adjacent second pixels differ from each other, and a polarity signal is inverted when switching is performed between first and second sub-frames.
摘要:
An image display device applies a higher voltage than the original voltage to the pixel, without causing deterioration of the display quality. The image display device includes a plurality of pixels each including a main capacitive element as a display element performing display operation in accordance with image data supplied to one end thereof. An auxiliary capacitive element has one end connected to the one end of the main capacitive element. A drive circuit drives each of the pixels, while supplying an additional potential to the other end of the auxiliary capacitive element in each of the pixels. The additional potential is individually determined so that a voltage between both ends of the main capacitive element rises higher than an original voltage.
摘要:
A circuit for display correction includes a memory which stores first data indicative of size and position of a rectangular region on a display screen and second data indicative of gray level changes in a surrounding region around the rectangular region in an isometric manner with respect to a horizontal direction and a vertical direction, and an image processing unit which adjusts gray levels of image data in response to the first data and the second data stored in the memory.
摘要:
An LCD device includes a display unit including pixels having a multi-pixel structure; first and second driving units that drive scanning and signal lines, respectively; an image acquisition unit, and a control unit. Each of the pixels includes first and second pixels, and first and second pixels of pixels are connected to two corresponding signal lines in a checkerboard manner. The first driving unit is controlled to repeatedly scan a first sub-frame of odd lines and a second sub-frame of even lines, and the second driving unit is controlled in such a manner that the polarity of the first pixel of a pixel differs from that of the second pixel of the pixel, the polarities of the adjacent first pixels differ from each other and those of the adjacent second pixels differ from each other, and a polarity signal is inverted when switching is performed between first and second sub-frames.
摘要:
An image display device capable of applying a higher voltage than the original voltage to the pixel, without causing deterioration of the display quality is provided. The image display device includes: a plurality of pixels each including a main capacitive element as a display element performing display operation in accordance with image data supplied to one end thereof, and an auxiliary capacitive element having one end connected to the one end of the main capacitive element, and driving means for driving each of the pixels, while supplying an additional potential to the other end of the auxiliary capacitive element in each of the pixels, the additional potential being individually determined so that a voltage between both ends of the main capacitive element rises higher than an original voltage.
摘要:
An image signal processing device is provided, which has therein a memory to store a first correction parameter to convert a specific region of display image of a display panel, a first coefficient generating section to generate a first coefficient for each pixel in a display panel based on the first correction parameter, a first correction value generating section to generate a first correction value for each pixel based on an input image signal, a first multiplier to multiply the first coefficient by the first correction value for each pixel and output a first multiplied value, and a first adder to add or subtract for each pixel the first multiplied value to or from the input image signal.
摘要:
A liquid crystal display device with shorter response time and simpler configuration is provided. The liquid crystal display device including: a plurality of pixels each including a liquid crystal element; and a driving section performing an image display driving by applying a driving voltage based on a video signal to the liquid crystal element in each of the pixels. The driving section performs an overdrive processing on the video signal of current frame to generate an overdriven video signal based on a current frame image and an immediately preceding frame image of the input images based on the video signals, and based on immediately-preceding-state information which is additional information briefly representing a immediately preceding state of the liquid crystal element of the pixel.
摘要:
An image signal processing device is provided, which has therein a memory to store a first correction parameter to convert a specific region of display image of a display panel, a first coefficient generating section to generate a first coefficient for each pixel in a display panel based on the first correction parameter, a first correction value generating section to generate a first correction value for each pixel based on an input image signal, a first multiplier to multiply the first coefficient by the first correction value for each pixel and output a first multiplied value, and a first adder to add or subtract for each pixel the first multiplied value to or from the input image signal.