摘要:
An encoder unit is disposed facing a scale. The encoder unit is constructed such that a processing circuit and a read head are integrally formed on one and the same semiconductor substrate. This construction results in size reduction and integral formation of the encoder unit.
摘要:
In an electronic caliper, a detecting circuit 112 detects displacement of a grid with respect to a scale, on the basis of a signal from a transducer 110. A CPU 114 displays the detected position on a display device 124. The CPU 114 performs error detection on the transducer, only when the relative speed of the grid with respect the scale is zero, or becomes equal to or smaller than a predetermined value. Since error detection is performed only at a predetermined timing, power consumption can be reduced.
摘要:
An induction type tranducer is formed to be a substrate having a multilayer structure. The substrate has a multilayer structure including six layers, a first layer through sixth layer. An exciting coil is formed at the first layer. Detecting coils are formed at the second layer and the third layer. A wiring layer is formed at the fifth layer at the opposite side of the scale from the core layer. A signal processing IC is formed at the sixth layer. A magnetic shield layer, which insulates magnetic flux from the exciting coil, is formed at the fourth layer between the exciting coil and the signal processing IC.
摘要:
Output of an encoder are sampled by A/D converters 11a and 11b to be converted to N bits A-phase and B-phase digital data DA and DB. In a look-up table memory 12, reference phase angle data of phase divisions and average gradient vectors of changes in phase angle data within the phase divisions are stored, the phase divisions being addressed by the high order NU bits of data DA and DB. An arithmetic circuit 13 determines a vector inner product of an average gradient vector and phase-interpolating data represented by the low order NL bits of the data DA and DB to add the resultant to a phase angle data, thereby outputting an interpolated phase angle data.
摘要:
A three-grating type photoelectric encoder includes a second grating formed on a scale and first and third gratings disposed on a side of a detector. A part of at least the first grating is shifted in a direction of a measurement axis by P/(2n) (wherein P is a grating pitch, n is the order of a harmonic component to be removed) in order to remove a harmonic component of the nth order. This encoder can be improved with high accuracy by removing harmonic components without increasing manufacturing costs.
摘要:
An offset error, an amplitude error, a phase error and a third harmonic component contained in two-phase sinusoidal signals are removed using relatively simple digital computations. An offset error contained in two-phase sinusoidal signals with a phase difference output from an encoder is detected and corrected. Then, an amplitude error contained in the offset-corrected two-phase sinusoidal signals is detected and corrected. Subsequently, a phase error contained in the amplitude-corrected two-phase sinusoidal signals is detected and corrected. Further, a third harmonic distortion contained in the phase-corrected two-phase sinusoidal signals is detected and corrected. Each correction step includes detecting an error from an ideal Lissajous waveform contained in the corrected two-phase sinusoidal signals, and adding the detected error to an accumulatively added last value to yield a new correction coefficient, thereby dynamically updating the correction coefficient.
摘要:
Two-phase sinusoidal signals QA, QB output from an encoder are interpolated by sample-and-hold (S/H) circuits and A/D conversion (ADC) circuits, and data D is output in accordance with a data request signal RQ from exterior. For this interpolation of encoder output, a direction discrimination up/down counter is arranged near a two-phase square-wave uniform pulse generating circuit, and the data D is latched and output using a signal which is obtained by delaying the data request signal RQ. This can reduce synchronization errors between the data request signal RQ from exterior and the interpolated data, with an improvement in dynamic precision.
摘要:
A third harmonic distortion corrector is equipped for correcting a third harmonic distortion contained in a two-phase sinusoidal signals with different phases output from an encoder. A third harmonic calculator/detector calculates the amplitude a3 and the phase φ3 of the third harmonic using Fourier analysis, based on change in radius r of the Lissajous waveform output from a r-θ converter. The third harmonic distortion corrector corrects the third harmonic distortion of the two-phase sinusoidal signal A4, B4 based on the amplitude a3 and the phase φ3 of the third harmonic calculated.
摘要:
A photoelectric encoder is provided, which emits light from a light source to a main scale and an index scale that can relatively move with respect to each other and obtains a light-receiving signal by interaction between the main scale and the index scale. The photoelectric encoder uses as the light source an incoherent semiconductor light source (white LED) in which a full width at half maximum of an emission spectrum is wider than that of a monochromatic semiconductor light source. Thus, it is possible to reduce an effect of a gap change on an output signal of the encoder and make positional adjustment easier, thereby improving misalignment characteristics.
摘要:
A data output encoder capable of having its state of retaining internal error information and self-diagnostic information reset without recourse to removing power or furnishing a dedicated signal line. A reset pulse generator monitors the changing status of an externally provided output request signal. When the signal status reaches a predetermined pattern, the reset pulse generator generates reset pulses that cause an RS flip-flop circuit to reset the state in which the internal error information and self-diagnostic information are retained.