Abstract:
A counter configuration operates in cooperation with a delay configuration such that the counter configuration counts an input interval based on a given clock speed and a given clock interval while the delay configuration provides an enhanced data output that is greater than what would otherwise be provided by the given clock speed. The counter configuration counts responsive to a selected edge in the clock interval. An apparatus in the form of a correction arrangement and an associated method are configured to monitor at least the delay configuration output for detecting a particular time relationship between an endpoint of the input interval and a nearest occurrence of the selected clock edge in the given clock signal that is indicative of at least a potential error in the enhanced data output and determining if the potential error is an actual error for subsequent use in correcting the enhanced data output.
Abstract:
A data conversion device is provided with a data converting means that sequentially converts first data into second data of the number of second bits, wherein an analog signal is quantized into the first data by the number of first bits, and the first and second data can be first and second maximum values, respectively. The data converting means is comprised of a first conversion means (steps 21 and 23) that, when a value of the fast data is not the first maximum value, converts the first data to the second data by adding 0 to a lower bit side of the first data and a second conversion means (steps 21 and 24-26) that converts the first data to the second data so that, when a value of the first data is the fast maximum value, a value can be made larger, in accordance with a value be-fore or after the first data, than the data of the number of second bits obtained by adding 0 to the lower bit side of the first data. With the structure, when the data obtained by quantizing an analog signal is converted to data with the number of more bits, a rounding error by quantizing is improved as much as possible.
Abstract:
A delay circuit includes a MOSFET and bias voltage sources. The bias voltage sources apply a voltage difference between the drain and source of the MOSFET. The bias voltage source supplies a source voltage to a source electrode of the MOSFET. The bias voltage source supplies a drain voltage to a drain electrode of the MOSFET. An input signal to be delayed is propagated through the gate of the MOSFET in the gate width direction (y-axis direction).
Abstract:
Disclosed are various embodiments of interpolation circuits for use in conjunction with optical encoders. The analog output signals provided by incremental or absolute motion encoders are provided to an interpolation circuit, which is capable of providing high interpolation factor output signals having high timing accuracy. The disclosed interpolation circuits may be implemented using CMOS or BiCMOS processes without undue effort.
Abstract:
There are provided an analog-digital converter circuit capable of performing the same degree of operation as being performed at a high-frequency oscillation pulse using a low-frequency oscillation pulse without using the high-frequency oscillation pulse, a timing signal generating circuit generating a timing signal at the high frequency, and a control device using the circuits. In an analog-digital converter circuit, a periodic signal generating circuit allows the first to j-th pulse counting devices of the N pulse counting devices to count a count value X and allows the other pulse counting devices to count a count value X−1 in each sampling period by sequentially generating N serial periodic signals at a delay time interval of [approximate value of one period (T) of periodic signals]÷N. A digital signal generating circuit converts the analog signal to the digital signal.
Abstract:
After cyclic original signals generated from a sensing element of an encoder are converted into digital signals, positions P(0) to P(n) in one period are obtained for each given period by means of a digital interpolator. If position data obtained immediately after a zero cross point is detected are P(0) and P(n) and if speed is fixed, an object should move on a straight line from a position P(0) to a position P(n). An actual detected position data P(m) is deviated from this straight line by D(m). This detection error D(m) and the detected position data P(m) are combined and stored in advance as reference data, and correction is carried out using the reference data every time position data is detected by the digital interpolator.
Abstract:
A position-measuring circuit is described for use with an analog position encoder of the kind comprising a code member and at least two sensors for sensing successive marks on the code member during relative movement between the code member and sensors, the sensors providing two oscillating quadrature signals. The circuit comprising means for obtaining a relatively coarse measure of position by detecting successive instants t0-t3 at which the amplitudes of the sensor signals are equal or at which the amplitude of one signal is equal to the inverse of the amplitude of the other signal. The amplitude of one of the signals or its inverse is stored at each detection instant to alternately establish relatively high and low threshold levels. A fine measure of position at an arbitrary instant T is obtained as a function of the instantaneous amplitude P of one of the signals and the difference between neighbouring high and low thresholds levels.
Abstract:
A method and a system for acquiring local signal behavior parameters (LSBPs) of a band-limited (BL) signa, for representing and processing the signal, wherein the LSBPs encode the signal's local behavior in between Nyquist rate points. Preferably, a section of a BL signal within a sampling window is represented as a truncated series of order n at a sampling moment within the sampling window. The truncated series having nnull1 LSBPs as its coefficients, encoding the signal's local behavior between Nyquist rate points. Compared to the conventional approach that encodes a signal's behavior by signal samples taken at Nyquist rate points, the invention encodes more signal behavior. Discrete signal samples are obtained from the signal. The LSBPs are solved numerically such that the interpolated values of the truncated series provide the least-square fit with the discrete signal samples. The LSBPs are repectively the values of chromatic differential operators of order 0 to order n evaluated at the sampling moment.
Abstract:
An interpolation process is described for use with an incremental position measuring device which produces a periodic analog output signal. The output signal is digitized and then applied as an input to a digital computer programmed to calculate the interpolation value of the signal. In the preferred embodiment the computer is also programmed to apply a number of corrections to the digitized signal prior to interpolation.
Abstract:
A safety switching device, with which a safety-related device, can be set into a safe state. The safety switching device has a microprocessor or microcontroller, which can set an electric drive to be protected into a safe state both if an emergency circuit breaker, protective door switch, and/or two-hand switch is activated and also if there is faulty operation of the safety-related device or electric drive. For this purpose, the microprocessor is implemented such that it can determine from at least one analog signal to be measured whether a predetermined parameter lies outside a predetermined operating range. In addition, the microprocessor can be a component of a safety device which is constructed for multiple-channel control of a safety-related electric drive. In this way, the safety switching device can respond to several safety functions independent of each other in order to set an electric drive into a safe state.