摘要:
When a salt of an amine and an optically active diacyltartaric acid, or a diastereomer salt of an optically active amine and an optically active diacyltartaric acid, obtained by optically resolving a racemic amine using the optically active diacyltartaric acid, is salt-exchanged with an acid aqueous solution, the optically active diacyltartaric acid is added in the acid aqueous solution beforehand.Furthermore, a raw material containing a racemic amine and an optically active diacyltartaric acid is optically resolved, and the diastereomer salt of the optically active amine and the optically active diacyltartaric acid respectively of one isomer type, is separated. The obtained diastereomer salt is dissociated using an acid aqueous solution containing the optically active diacyltartaric acid, for recovering the optically active diacyltartaric acid, and the obtained optically active diacyltartaric acid is recycled into an optical resolution step as a raw material of the optical resolution step.
摘要:
An industrial process for producing O,O'-diacyltartaric anhydride with high purity and high efficiency is disclosed. According to the process of the invention, a carboxylic acid of the formula (I):R.sup.1 COOH (I)(wherein R.sup.1 represents C.sub.1 -C.sub.4 alkyl group; phenyl group; or phenyl group substituted with 1-5 C.sub.1 -C.sub.4 alkyl groups or with 1-5 halogen atoms) is reacted with tartaric acid in the presence of a chlorinating agent.
摘要:
Optically-active 2-piperazinecarboxylic acid derivatives are produced through diastereomer salt resolution using optically-active acidic amino acid derivative as the resolving reagent. In this method, the recovery of the resolving reagent used is high, and the production efficiency to produce the optically-active products is high. As the optically-active acidic amino acid derivatives, usable are optically-active, N-acylated acidic amino acid derivatives and optically-active, N-sulfonylated acidic amino acid derivatives.
摘要:
When a salt of an amine and an optically active diacyltartaric acid, or a diastereomer salt of an optically active amine and an optically active diacyltartaric acid, obtained by optically resolving a racemic amine using the optically active diacyltartaric acid, is salt-exchanged with an acid aqueous solution, the optically active diacyltartaric acid is added in the acid aqueous solution beforehand. Furthermore, a raw material containing a racemic amine and an optically active diacyltartaric acid is optically resolved, and the diastereomer salt of the optically active amine and the optically active diacyltartaric acid respectively of one isomer type, is separated. The obtained diastereomer salt is dissociated using an acid aqueous solution containing the optically active diacyltartaric acid, for recovering the optically active diacyltartaric acid, and the obtained optically active diacyltartaric acid is recycled into an optical resolution step as a raw material of the optical resolution step.
摘要:
Disclosed are a method for producing racemic piperidine derivatives by processing optically-active piperidine derivatives in a hydrogen atmosphere in the presence of a reducing catalyst; and a method for producing optically-active piperidine derivatives or their acid salts by optically resolving the racemic piperidine derivatives obtained in the former method.
摘要:
A rotary head for use in an apparatus for forming a stranded wire, the apparatus including an inner rotating body rotating about a predetermined axis, an outer rotating body surrounding the inner rotating body to define an annular space between the two bodies, which rotate about the same axis, and a guide member provided at a first end portion of the annular space to guide wire stock. The rotary head is located at a second end portion of the annular space, has cutters and rotates in a predetermined direction, and also has plural pairs of projections extending on the outer rotating body side of the annular space and the inner rotating body side thereof, with a predetermined gap therebetween, the cutters being provided in the vicinity of the gap.
摘要:
The present invention provides a wire for a press-connecting terminal which has a high flexibility, and achieves a high reliability for a connection portion at the time of press-connection, and also provides a method of producing a conductor of such a wire. The wire provides a stranded conductor and an insulator covering the conductor. Wire elements of the stranded conductor are concentrically twisted in layers in the same direction at the same pitch, and the stranded conductor is compressed into a circular cross-section in such a manner that a space factor of the cross-section of the conductor is not less than 99%. The present invention also provides a multi-layer compressed concentric stranded conductor which enables a uniform compression of a base stranded wire. Not more than 61 wire elements of the same diameter are twisted together in such a manner that the number of the wire elements of a Nth layer except for the central wire element is 6N and that a line, interconnecting the centers of the wire elements of each of those layers including a second layer and any other layer outside of the second layer counting from the central wire element, has a dodecagonal shape, and subsequently the thus twisted wire elements are compressed into a circular cross-sectional shape.
摘要:
A twisted wire manufacturing apparatus is provided with a plurality of injection dies communicating with an annular groove formed in a rotary head. An annular shoe for gradually reducing a sectional area of the annular groove is slidably fitted to the annular groove. Raw material is supplied into the annular groove and raw wires are injected from the injection dies. One of the plurality of injection dies provides an increased injection resistance to reduce the injection speed of a core raw wire injected from that injection die relative to the injection speed of outer layer raw wires injected from other injection dies.
摘要:
A high-tensile copper alloy for current conduction and having superior flexibility is disclosed. The hightensile copper alloy, in a first embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.3% by weight of In; from 0.05 to 0.3% by weight of Sn; and the balance of Cu. The high-tensile copper alloy, in a second embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.3% by weight of In; from 0.01 to 0.2% by weight of Co; and the balance of Cu. The high-tensile copper alloy, in a third embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.3% by weight of In; from 0.01 to 0.3% by weight of Mg; and the balance of Cu. The high-tensile copper alloy, in a fourth embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.25% by weight of In; from 0.05 to 0.25% by weight of Sn; from 0.05 to 0.20% by weight of Mg; and the balance of Cu. The hightensile copper alloy, in the fifth embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.25% by weight of In; from 0.05 to 0.20% by weight of Co; from 0.05 to 0.20% by weight of Mg; and the balance of Cu.
摘要:
A high-tensile copper alloy for current conduction and having superior flexibility is disclosed. The high-tensile copper alloy, in a first embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.3% by weight of In; from 0.05 to 0.3% by weight of Sn; and the balance of Cu. The high-tensile copper alloy, in a second embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.3% by weight of In; from 0.01 to 0.2% by weight of Co; and the balance of Cu. The high-tensile copper alloy, in a third embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.3% by weight of In; from 0.01 to 0.3% by weight of Mg; and the balance of Cu. The high-tensile copper alloy, in a fourth embodiment, is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.25% by weight of In; from 0.05 to 0.25% by weight of Sn; from 0.05 to 0.20% by weight of Mg; and the balance of Cu. The high-tensile copper alloy, in the fifth embodiment is consisting essentially of: from 2.0 to 4.0% by weight of Ni; from 0.4 to 1.0% by weight of Si; from 0.05 to 0.25% by weight of In; from 0.05 to 0.20% by weight of Co; from 0.05 to 0.20% by weight of Mg; and the balance of Cu.