摘要:
An apparatus for controlling a heater for an oxygen sensor which includes a heater resistance value detecting unit for detecting a heater resistance value of the heater, the power control unit for controlling a power supplied to the heater so that the heater resistance value is equal to a target resistance value, and a target resistance value setting unit for calculating a rate of change in the heater resistance value of the heater measured by the heater resistance value detecting unit, and for determining the target resistance value on the basis of the rate of change in the heater resistance value.
摘要:
An apparatus for controlling a heater for an oxygen sensor includes a heater controller for detecting a heater resistance value of a heater and for controlling the heater so that a detected resistance value of the heater is equal to a target resistance value. A specific operating condition detecting unit detects a specific operating condition of the internal combustion engine where the air-fuel ratio is other than a stoichiometric air-fuel ratio. A target resistance value changing unit changes the target resistance value when the air-fuel ratio in the specific operating condition indicated by the sensor output signal is s outside a normal range of air-fuel ratio which should be detected in the specific operating condition.
摘要:
In a control device, in a control device of an internal combustion engine provided with an internal combustion engine main body mounted to a vehicle and a heater operating on the basis of an output from a specific sensor given as a trigger at least before the internal combustion engine main body starts, whether or not the heater is operated before the start is stored, and it is judged that the sensor has failed when operation of the heater is not stored.
摘要:
A device for detecting deterioration of a catalyst in an internal combustion engine having a heater on the upstream side of a catalytic converter provided in an exhaust gas passage, the device being capable of expanding the deterioration determination conditions of the catalyst. It is determined whether the conditions, except the temperature condition, are all obtained among the conditions for detecting deterioration of the catalytic converter. When the conditions, except the temperature condition, are all obtained, an electric power is supplied from a power source to the heater to satisfy the temperature condition. Deterioration of the catalyst can be reliably detected if the electric power is supplied to the heater only when the engine is in the idling operation condition and if deterioration of the catalyst is detected when the time for supplying electric power to the heater has become larger than a predetermined period of time. The heater may be one contained in the electrically heated catalyst.
摘要:
A device for judging the deterioration of a three-way catalyst comprising an upstream O.sub.2 sensor and a downstream O.sub.2 sensor which are arranged in the exhaust passage upstream and downstream of the three-way catalyst respectively. When the ratio of length of the output signal response curve of the downstream O.sub.2 sensor and the length of the output signal response curve of the upstream O.sub.2 sensor is over a threshold level, it is judged that the three-way catalyst has deteriorated. The threshold value is reduced as the mean value of the air-fuel ratio becomes off from the stoichiometric air-fuel ratio.
摘要:
A device for judging the deterioration of a three-way catalyst comprising an upstream O.sub.2 sensor and a downstream O.sub.2 sensor which are arranged in the exhaust passage upstream and downstream of the three-way catalyst respectively. When the ratio of length of the output signal response curve of the downstream O.sub.2 sensor and the length of the output signal response curve of the upstream O.sub.2 sensor is over a threshold level, it is judged that the three-way catalyst has deteriorated. The judgement of deterioration of the three-way catalyst is performed when the three-way catalyst starts to be activated. At this time, the lower the temperature of the downstream O.sub.2 sensor, the lower the threshold level is made.
摘要:
Fuel-vapor evaporating from a fuel tank is led through a vapor pipe and absorbed in a charcoal canister. Fuel-vapor stored in the charcoal canister is supplied to an inlet pipe when a purge valve is opened when the engine is driven, because the pressure in the inlet pipe is low. Fuel-vapor is then burned as fuel in the engine. If the opening of the purge valve is suddenly increased at the start of the purge, the air fuel ratio control is disturbed. Therefore, the purge rate is gradually increased and the vapor concentration of the fuel-vapor purged from the charcoal canister is learned, and the change rate of the purge rate is made small because the air-fuel ratio control may be disturbed when the vapor concentration is not learned enough.
摘要:
In a double air-fuel sensor system including two air-fuel ratio sensors upstream and downstream of a catalyst converter provided in an exhaust gas passage, an air-fuel ratio correction amount is calculated in accordance with the results of the comparison of the outputs of the upstream-side and downstream-side air-fuel ratio sensors with first and second reference voltages, respectively, thereby obtaining an actual air-fuel ratio. The second reference voltage is changed in accordance with the load of the engine, to change the mean air-fuel ratio.
摘要:
In a double air-fuel sensor system including two air-fuel ratio sensors upstream and downstream of a catalyst converter provided in an exhaust gas passage, an actual air-fuel ratio is adjusted in accordance with the outputs of the upstream-side air-fuel ratio sensor and the downstream-side air-fuel ratio sensor. The adjustment of the actual air-fuel ratio by the downstream-side air-fuel ratio sensor is prohibited in accordance with a coolant temperature of the engine.
摘要:
A catalyst degradation determining method includes the steps of: controlling an upstream-of-catalyst air-fuel ratio occurring upstream of a first catalyst to an air-fuel ratio that is rich of a stoichiometric air-fuel ratio so that first and second catalysts store oxygen up to a maximum storage amount of oxygen. The method then includes the steps of controlling the upstream-of-catalyst air-fuel ratio to a first lean air-fuel ratio until an output of a downstream-of-first-catalyst sensor indicates a lean air-fuel ratio, and then to a second lean air-fuel ratio and that has a value that is determined in accordance with an oxidizing-reducing capability index value, until a time point when an output of a downstream-of-second-catalyst air-fuel ratio sensor indicates an air-fuel ratio that is lean.