摘要:
MOS FETs are formed by a drain layer 101, a drift layer 102, P-type body areas 103, N+-type source areas 105, gate electrodes 108, a source electrode film 110, and a drain electrode film 111. In parallel to the MOS FETs, the drain layer 101, the drift layer 102, the P−-type diffusion area 109, and the source electrode film 110 form a diode. The source electrode film 110 and the P−-type diffusion area 109 form an Ohmic contact. The total amount of impurities, which function as P-type impurities in each P-type body area 103, is larger than the total amount of impurities, which function as P-type impurities in the P−-type diffusion area 109.
摘要翻译:MOS FET由漏极层101,漂移层102,P型体区域103,N +型源极区域105,栅极电极108,源极电极膜110和漏极电极膜111形成。与 MOS FET,漏极层101,漂移层102,P型扩散区域109和源极电极膜110形成二极管。 源极电极膜110和P型扩散区域109形成欧姆接触。 每个P型体区103中用作P型杂质的杂质的总量大于P型扩散区域109中作为P型杂质的杂质的总量。
摘要:
MOS FETs are formed by a drain layer 101, a drift layer 102, P-type body areas 103, N+-type source areas 105, gate electrodes 108, a source electrode film 110, and a drain electrode film 111. In parallel to the MOS FETs, the drain layer 101, the drift layer 102, the P−-type diffusion area 109, and the source electrode film 110 form a diode. The source electrode film 110 and the P−-type diffusion area 109 form an Ohmic contact. The total amount of impurities, which function as P-type impurities in each P-type body area 103, is larger than the total amount of impurities, which function as P-type impurities in the P−-type diffusion area 109.
摘要:
A trench gate power MOSFET (1) includes: an n−-type epitaxial layer (12); a p-type body region (20) formed in the vicinity of an upper surface of the n−-type epitaxial layer (12); a plurality of trenches (14) formed so as to reach the n−-type epitaxial layer (12) from an upper surface of the p-type body region (20); and gates (18) formed in the trenches (14). In some regions facing the p-type body region (20) in the n−-type epitaxial layer (12), p-type carrier extracting regions (26a, 26b, 26c) are formed. According to the trench gate power MOSFET (1), holes generated in a cell region can be effectively collected through the p-type carrier extracting regions (26a, 26b, 26c) so as to further increase a speed of the switching operation.
摘要:
A trench gate power MOSFET (1) includes: an n−-type epitaxial layer (12); a p-type body region (20) formed in the vicinity of an upper surface of the n−-type epitaxial layer (12); a plurality of trenches (14) formed so as to reach the n−-type epitaxial layer (12) from an upper surface of the p-type body region (20); and gates (18) formed in the trenches (14). In some regions facing the p-type body region (20) in the n−-type epitaxial layer (12), p-type carrier extracting regions (26a, 26b, 26c) are formed. According to the trench gate power MOSFET (1), holes generated in a cell region can be effectively collected through the p-type carrier extracting regions (26a, 26b, 26c) so as to further increase a speed of the switching operation.
摘要:
A trench gate power MOSFET (1) of the present invention includes an n-type epitaxial layer (12), gates (18) and MOSFET cells. The gate (18) is disposed in a trench (14) formed in a surface of the n-type epitaxial layer (12). The MOSFET cell is formed on the surface of the n-type epitaxial layer (12) so as to be in contact with side surfaces of the trench (14). The trench gate power MOSFET (1) further includes a p-type isolation region (26) formed on the surface of the n-type epitaxial layer (12) and disposed between the MOSFET cells adjacent to each other in the extending direction of the trench (14) out of the MOSFET cells, and has a pn-junction diode formed between the p-type isolation region (26) and the n-type epitaxial layer (12). According to the trench gate power MOSFET (1) of the present invention, the increase of a diode leakage current with the elevation of temperature can be suppressed.
摘要:
In a semiconductor device in which gate trenches and source trenches are formed, when the semiconductor device is flatly viewed, N+ type source areas are formed in parallel with the gate trenches to ease the miniaturization of the semiconductor device. P+ type diffusion areas are separately formed in a direction orthogonal to the N+ type source areas and the gate trenches. Thus, the N+ type source areas and a P type body layer are formed in a laminated state, but the P+ type diffusion areas are not laminated. Therefore, the structure of a mesa section is extremely simple. Furthermore, gate electrode films are connected to one another by a connection member. Thus, the semiconductor device has such a structure as to easily secure electric connection to each gate electrode film from outside. According to the foregoing structure, it is possible to extremely ease the miniaturization of the semiconductor device.
摘要:
In a semiconductor device in which gate trenches and source trenches are formed, when the semiconductor device is flatly viewed, N+ type source areas are formed in parallel with the gate trenches to ease the miniaturization of the semiconductor device. P+ type diffusion areas are separately formed in a direction orthogonal to the N+ type source areas and the gate trenches. Thus, the N+ type source areas and a P type body layer are formed in a laminated state, but the P+ type diffusion areas are not laminated. Therefore, the structure of a mesa section is extremely simple. Furthermore, gate electrode films are connected to one another by a connection member. Thus, the semiconductor device has such a structure as to easily secure electric connection to each gate electrode film from outside. According to the foregoing structure, it is possible to extremely ease the miniaturization of the semiconductor device.
摘要:
The capacitance between the gate electrode film and the drain layer of semiconductor device is reduced while keeping the resistance low, with the breakdown voltage of the gate insulating film also being maintained at a sufficient level. A trench 10 is formed with the bottom of the trench at a comparatively shallow position in an N-epitaxial layer 18. The thickness of a bottom surface part 16 of a gate electrode film 11 is formed so as to be thicker than other parts of the gate electrode film 11. Also, when a P type body layer 19 is formed, an interface between the P type body layer 19 and an N-epitaxial layer 18 is located at a deeper position than a bottom end of the gate electrode film 11.
摘要:
An example semiconductor device is capable of preventing a buried diffusion region formed near the bottom surface of a source trench from diffusing to the extent that it contacts a gate trench in the vicinity of that buried diffusion region even if the accuracy of the photographic step of trench formation is not so high. A side wall is formed on the circumferential side of the source trench and then impurities are injected to the bottom surface of the source trench. When the impurities are heated and diffused, the buried P+-type diffusion region is formed with a width almost identical to the width of the opening of the source trench or smaller than the width of the opening of the source trench. Thus, even when irregularities are generated in the manufacturing step and the buried diffusion region becomes larger than is necessary, it is possible to prevent contact of the buried diffusion region with the gate trench.
摘要:
The capacitance between the gate electrode film and the drain layer of semiconductor device is reduced while keeping the resistance low, with the breakdown voltage of the gate insulating film also being maintained at a sufficient level. A trench 10 is formed with the bottom of the trench at a comparatively shallow position in an N-epitaxial layer 18. The thickness of a bottom surface part 16 of a gate electrode film 11 is formed so as to be thicker than other parts of the gate electrode film 11. Also, when a P type body layer 19 is formed, an interface between the P type body layer 19 and an N-epitaxial layer 18 is located at a deeper position than a bottom end of the gate electrode film 11.