Abstract:
An up-drawing continuous casting method casts a casting having a bent portion. When an angle (θ) (where, 0°≤θ≤90°) between an up-drawing direction of molten metal and an upper surface of a shape determining member is reduced to a first angle, drawing up the molten metal while maintaining the angle (θ) at the first angle, and casting a first casting, and casting a connecting portion adjacent to the cast first casting; interrupting the drawing up of the molten metal, and dipping the connecting portion into the molten metal while passing the connecting portion through the shape determining member, and melting the connecting portion; and setting the angle (θ) to a second angle that is larger than the first angle, restarting the drawing up of the molten metal and casting a second casting adjacent to the first casting.
Abstract:
A pulling-up-type continuous casting apparatus according to an aspect of the present invention includes a holding furnace that holds molten metal, and a shape defining member disposed above a molten-metal surface of the molten metal held in the holding furnace, the shape defining member being configured to define a cross-sectional shape of a cast-metal article to be cast as molten metal passes through an opening formed in the shape defining member. The opening is formed in such a manner that a size of the opening on a top surface of the shape defining member is larger than that on a bottom surface of the shape defining member. With this configuration, a cast-metal article having excellent surface quality can be produced even when molten metal is drawn up in an oblique direction.
Abstract:
An up-drawing continuous casting apparatus according to one aspect of the invention includes a molten metal holding furnace that holds molten metal; a shape determining member that is arranged near a molten metal surface of the molten metal held in the molten metal holding furnace, and that determines a sectional shape of a cast casting by the molten metal passing through the shape determining member, the shape determining member including a pattern provided on an upper surface of the shape determining member; an imaging portion configured to capture an image of the pattern that is reflected onto both retained molten metal that has passed through the shape determining member, and the casting formed by the retained molten metal solidifying; an image analyzing portion configured to determine a solidification interface from the image; and a casting controlling portion configured to change a casting condition.
Abstract:
An up-thawing continuous casting method includes drawing up molten metal (M1) held in a holding furnace (101), through a shape determining member (102) that determines a sectional shape of a cast casting (M3). The sectional shape determined by the shape determining member (102) includes a round-cornered portion, and a value (Rf) of a curvature radius of the round-cornered portion that is determined by the shape determining member (102) is smaller than a design value (Rt) of a curvature radius of a round-cornered portion of the casting (M3).
Abstract:
A hoisting type continuous casting device includes a keeping furnace, a first shape regulating member, an imaging section, an image analysis section, and a casting control section. The keeping furnace keeps a melt. The first shape regulating member is mounted in the vicinity of a molten surface of the melt kept in the keeping furnace and regulates a cross-sectional shape of a casting to be casted by the melt passing therethrough. The imaging section captures an image of the melt that has passed through the first shape regulating member. The image analysis section detects swinging motion in the melt from the image and determines a solidification interface based on presence or absence of the swinging motion. The casting control section changes a casting condition when the solidification interface determined by the image analysis section is not within a predetermined reference range.
Abstract:
A mold capable of inhibiting supercooling is provided. The mold includes a cooling channel formed therein and has a recess formed in a cavity surface, and a heat-insulating barrier formed between the cooling channel and a bottom surface of the recess formed in the cavity surface. The heat-insulating barrier includes a space formed between the cooling channel and the bottom surface of the recess formed in the cavity surface. The space is filled with a medium (for example, air) having a thermal conductivity lower than that of other portions of the mold.
Abstract:
A pulling-up-type continuous casting apparatus includes a holding furnace that holds molten metal, a shape defining member disposed above a surface of the molten metal held in the holding furnace, and configured to define a cross-sectional shape of a cast-metal article as the molten metal passes through it, an image pickup unit that takes an image of the molten metal that has passed through the shape defining member, an image analysis unit that detects a fluctuation on the molten metal from the image and determines a solidification interface based on presence/absence of the fluctuation, and a casting control unit that changes a casting condition only when the solidification interface determined by the image analysis unit is not within a predetermined reference range. The casting control unit uses a reference range which differs according to the pulling-up angle of the molten metal.
Abstract:
An up-drawing continuous casting apparatus according to one aspect of the invention includes a molten metal holding furnace that holds molten metal; a shape determining member that is arranged near a molten metal surface of the molten metal held in the molten metal holding furnace, and that determines a sectional shape of a cast casting by the molten metal passing through the shape determining member, the shape determining member including a pattern provided on an upper surface of the shape determining member; an imaging portion configured to capture an image of the pattern that is reflected onto both retained molten metal that has passed through the shape determining member, and the casting formed by the retained molten metal solidifying; an image analyzing portion configured to determine a solidification interface from the image; and a casting controlling portion configured to change a casting condition.
Abstract:
An up-drawing continuous casting method according to one aspect of the invention is an up-drawing continuous casting method for forming a bent shape in a cast casting by forming the casting in a first direction and then changing an up-drawing direction to a second direction and forming the casting in the second direction. This up-drawing continuous casting method includes drawing up the molten metal in the first direction; and changing the up-drawing direction to a third direction in which an angle between the third direction and the first direction is greater than an angle between the second direction and the first direction, from after a portion that will have the bent shape passes through the molten metal passage portion until the portion that will have the bent shape reaches a solidification interface, and then drawing up the molten metal.