摘要:
A heart stimulator has a stimulation energy delivering assembly, including at least one lead adapted for implantation in contact with cardiac tissue, and an atrial arrhythmia detector, and a control unit connected to the stimulation energy delivering assembly and to the detector. The control unit controls the stimulation energy delivering assembly to deliver at least one atrial arrhythmia abolishing therapy and, if continued atrial arrhythmia is detected, to deliver antithrombus stimulation energy pulses of lower energy than a defibrillation shock, but with different timing and with sufficient energy for producing atrial contraction for increasing hemodynamic blood transportation away from the atrium and for preventing thrombi formation in the atrium. For a patient suffering from a chronic or paroxysmal non-curable atrial arrhythmia, the control unit controls the stimulation energy delivering assembly to deliver the antithrombus energy without any preceding arrhythmia abolishing therapy.
摘要:
The present invention relates to the field of gas measurements, and more specifically to the field of testing the measuring function of a measuring device (7) for gas measurements, the measuring device (7) including a gas sensor (9) generating at least one output signal. The method includes connecting at least one simulation signal to the measuring device (7) and/or feeding a gas mixture to the measuring device wherein the magnitude of the concentration of a gas to be measured in the gas mixture is known. The invention also relates to a simulation device (1) for connection to the measuring device (7) for gas measurements when testing the measuring function of the measuring device (7). The simulation device (1) generates at least one simulation signal which can attain at least one signal level, wherein a certain signal value corresponds to a certain gas concentration.
摘要:
An implantable cardiac monitoring device as an A-mode ultrasound probe which is adapted to be positioned in the right ventricle of a heart, and which emits an ultrasound signal which is reflected from one cardiac segment of the left ventricle of the heart, and the ultrasound probe receives the resulting echo signal. The delay between the emission of the ultrasound signal and the reception of the resulting echo is measured, and from this delay a position of the cardiac segment is determined. The position of this cardiac segment, at least one reflecting the signal, is related to cardiac performance, and thus the monitoring device determines, from the detected position of the cardiac segment, the cardiac performance.
摘要:
The present invention relates to the field of gas measurements, andmore specifically to the field of testing the measuring function of a measuring device (7) for gas measurements, the measuring device (7) including a gas sensor (9) generating at least one output signal. The method includes connecting at least one simulation signal to the measuring device (7) and/or feeding a gas mixture to the measuring device wherein the magnitude of the concentration of a gas to be measured in the gas mixture is known. The invention also relates to a simulation device (1) for connection to the measuring device (7) for gas measurements when testing the measuring function of the measuring device (7). The simulation device (1) generates at least one simulation signal which can attain at least one signal level, wherein a certain signal value corresponds to a certain gas concentration.
摘要:
The function of a measuring device can be tested using a healthy person as an external control, provided that this person fulfils certain criteria and that particular method steps are adhered to.
摘要:
A handheld, small but accurate and reliable device for diagnostic NO measurements using a NO sensor, where the parameters governing the taking of the sample are different from the parameters optimal for the accuracy of said NO sensor I described. By temporarily storing a portion of the exhaled air, and feeding this to the sensor at a flow rate adapted to the NO sensor, the accuracy and sensitivity of a system/method involving NO sensors, in particular electrochemical NO sensors, can be increased. The method for diagnostic NO measurements comprises steps for controlling the inhalation of NO free air, as well as the exhalation, both by built-in means and by audible and/or visual feedback to the patient.
摘要:
A scrubber for eliminating NO from air flowing through the scrubber, comprising a housing (1) having at least one inlet hole (2) and an outlet hole (4) and which is comprising filtering material (6). A second outlet hole (9) is provided in the housing (1) at a position situated at a distance from the first outlet hole (4) and any inlet hole (2) so that the air leaving the second outlet hole (9) will have flown at least through a depth of the filtering material (6) substantially corresponding to the depth of the filtering material (6) for the air flowing from the inlet hole (2) to the first outlet hole (4).
摘要:
A medical implant such as a heart stimulator has a detector which detects an extracorporeally generated interrogation signal for at least one predetermined working parameter of the medical implant. The interrogation signal is generated by an interrogation signal device capable of only unidirectional communication to the medical implant. The implant includes a response signal generator which generates an extracorporeal detectable response signal, detectable, for example, by a stethoscope, which indicates only if the interrogated working parameter has a satisfactory value or a non-satisfactory value.
摘要:
The function of a measuring device can be tested using a healthy person as an external control, provided that this person fulfils certain criteria and that particular method steps are adhered to.
摘要:
A handheld, small but accurate and reliable device for diagnostic NO measurements using a NO sensor, where the parameters governing the taking of the sample are different from the parameters optimal for the accuracy of said NO sensor I described. By temporarily storing a portion of the exhaled air, and feeding this to the sensor at a flow rate adapted to the NO sensor, the accuracy and sensitivity of a system/method involving NO sensors, in particular electrochemical NO sensors, can be increased. The method for diagnostic NO measurements comprises steps for controlling the inhalation of NO free air, as well as the exhalation, both by built-in means and by audible and/or visual feedback to the patient.