摘要:
An air-fuel ratio control system for an internal combustion engine having a catalytic converter arranged in the exhaust system, and an air-fuel ratio sensor arranged upstream of the catalytic converter calculates an air-fuel ratio correction amount by means of proportional control and integral control based on an output from the air-fuel ratio sensor, and controls an air-fuel ratio of a mixture supplied to the engine, based on the air-fuel ratio correction amount. A control frequency at which the air-fuel ratio control is carried out is increased when deterioration of the catalytic converter is detected.
摘要:
An air-fuel ratio control system for an internal combustion engine calculates an air-fuel ratio feedback control parameter by proportional-integral control using a proportional factor and an integral factor, based an output signal from a second air-fuel ratio sensor arranged in an exhaust passage at a location upstream of a catalytic converter. An air-fuel ratio correction amount is calculated based on the air-fuel ratio feedback control parameter and an output signal from a first air-fuel ratio sensor arranged in the exhaust passage at a location upstream of the catalytic converter. An inversion period of the output signal from the second air-fuel ratio sensor is measured, and the proportional factor is changed according to the inversion period measured.
摘要:
A misfire-detecting system for an internal combustion engine has an ECU which detects a value of a parameter representative of a misfiring state of the engine, and also detects the deterioration degree of a catalytic converter arranged in the engine exhaust system. The ECU sets a misfire-determining reference value, based on the detected deterioration degree of the catalytic converter, compares between the detected value of the above parameter and the misfire-determining reference value, and determines whether the engine is in a misfiring state, based on the result of the comparison.
摘要:
An abnormality-detecting device is provided for an internal combustion engine having first and second oxygen sensors arranged in the exhaust system at locations upstream and downstream of a catalytic converter. An ECU detects the degree of deterioration of the catalytic converter, based on an output from the second oxygen sensor, and sets a reference value for determining an abnormality in the engine, based on the detected degree of deterioration of the catalytic converter. The ECU compares between the set reference value and a value based on an output from the first oxygen sensor, and determines the abnormality in the engine, based on the result of the comparison. Upon detection of the abnormality, an LED is actuated to issue an alarm.
摘要:
An air-fuel ratio control system for an internal combustion engine having a catalytic converter arranged in the exhaust system, and first and second air-fuel ratio sensors arranged upstream and downstream of the catalytic converter respectively has an ECU which calculates an air-fuel ratio correction amount, based at least on an output from the first air-fuel ratio sensor, and detects deterioration of the catalytic converter, based on an output from the second air-fuel ratio sensor when the engine is in a predetermined operating condition. The ECU inhibits detection of deterioration of the catalytic converter when the air-fuel ratio correction amount falls outside a predetermined range.
摘要:
A catalyst deterioration-detecting system is provided for an internal combustion engine having an oxygen concentration sensor arranged in an exhaust system downstream of a catalyst provided therein. An electronic control unit (ECU) controls the air-fuel ratio of a mixture supplied to the engine in response to an output from the oxygen concentration sensor. The ECU detects a value of an inversion period with which the output from the oxygen concentration sensor is inverted with respect to a predetermined reference value. Operating parameter sensors detect a value of at least one operating parameter of the engine related to a flow rate of the exhaust gases in the exhaust system. The ECU determines whether the catalyst is deteriorated, based on the detected value of the inversion period and the detected value of the at least one operating parameter. The ECU corrects the value of the inversion period in dependence on the detected value of the at least one operating parameter.
摘要:
An air-fuel ratio sensor deterioration-detecting device for an internal combustion engine having a catalytic converter arranged in the exhaust system, and first and second air-fuel ratio sensors arranged upstream and downstream of the catalytic converter respectively has an ECU which calculates an air-fuel ratio correction amount, based on outputs from the first air-fuel ratio sensors, and detects deterioration of the first air-fuel ratio sensor, based on the output from the first air-fuel ratio sensor. The ECU inhibits detection of deterioration of the first air-fuel ratio sensor when the air-fuel ratio correction amount falls outside a predetermined range.
摘要:
The air-furl ratio of an air-fuel mixture supplied to an internal combustion engine is controlled in response to an output from at least one oxygen sensor arranged in an exhaust passage for detecting concentration of oxygen present in exhaust gases. The deterioration of the at least one oxygen sensor is detected based on the output therefrom. When the engine is detected to be in a predetermined abnormal operating state, it is not permitted to monitor the output from the oxygen sensor for detecting deterioration thereof.
摘要:
A catalyst deterioration-determining system determines deterioration of a catalyst arranged in the exhaust passage of an internal combustion engine. An ECU is responsive to an output from an O.sub.2 sensor arranged upstream of the catalyst or outputs from O.sub.2 sensors arranged upstream and downstream of the catalyst for controlling the air-fuel ratio of a mixture supplied to the engine by means of an air-fuel ratio correction value (first air-fuel ratio control). When the engine is in a predetermined operating condition, the system effects changeover from the first air-fuel ratio control to a second air-fuel ratio control which is responsive to the output from the downstream O.sub.2 sensor for controlling the air-fuel ratio of the mixture by means of the air-fuel ratio correction value. After the changeover has been effected, a time period is measured which elapses from the time the second air-fuel ratio control causes a change in the air-fuel ratio correction value from a richer side to a leaner side or vice versa with respect to a stoichiometric air-fuel ratio to the time the output from the downstream O.sub.2 sensor is inverted from the richer side to the leaner side or vice versa with respect to the stoichiometric air-fuel ratio. It is determined that the catalyst is deteriorated, when the measured time period is shorter than the predetermined time period.
摘要:
An evaporative fuel-processing system for an internal combustion engine, in which a first control valve is arranged across an evaporative fuel-guiding passage extending from a fuel tank to a canister, a second control valve across a purging passage extending from the canister to the intake system of the engine, and a third control valve at an air inlet port of the canister, respectively. An ECU generates operation command signals to the first to third control valves for closing or opening the same. The ECU is responsive to an output from a tank internal pressure sensor which detects pressure within the fuel tank and the operation command signals, for detecting an abnormality in operation of a predetermined one of the first to third control valves.