摘要:
A stereoscopic image displaying method provides a data driving signal related to a right-eye image and a left-eye image. During a plurality of frame periods, the data driving signal switches polarities every m frame periods, wherein m is an integer larger than 1. The right-eye image is outputted during the odd-numbered frame periods among the plurality of frame periods, while the left-eye image is outputted during the even-numbered frame periods among the plurality of frame periods.
摘要:
An optical touch module and an optical touch display panel are provided. The optical touch module includes a first photo sensor, a second photo sensor, and a signal processing unit. The first photo sensor is disposed in one of the plurality of pixels of a pixel array. A first terminal and a control terminal of the first photo sensor are coupled to a first scan line. The second photo sensor has a first terminal coupled to a second terminal of the first photo sensor and outputting a sensing voltage, a control terminal coupled to the first terminal of the second photo sensor, and a second terminal receiving a first voltage. The signal processing unit is coupled to the first terminal of the second photo sensor, so as to convert the sensing voltage to a touch signal.
摘要:
An optical touch module and an optical touch display panel are provided. The optical touch module includes a first photo sensor, a second photo sensor, and a signal processing unit. The first photo sensor is disposed in one of the plurality of pixels of a pixel array. A first terminal and a control terminal of the first photo sensor are coupled to a first scan line. The second photo sensor has a first terminal coupled to a second terminal of the first photo sensor and outputting a sensing voltage, a control terminal coupled to the first terminal of the second photo sensor, and a second terminal receiving a first voltage. The signal processing unit is coupled to the first terminal of the second photo sensor, so as to convert the sensing voltage to a touch signal.
摘要:
Each pixel of an LCD display includes a main pixel, a sub-pixel, a resistor, and a third switch. The third switch is used for controlling the charging time of the main pixel and the sub-pixel. A data signal of a main pixel of a previous pixel is utilized to pre-charge the main pixel and the sub-pixel, and then data is transmitted to the sub-pixel and the main pixel. When data transmission to the sub-pixel is ended, the data transmission path to the sub-pixel is switched off, and the data keeps being transmitted only to the main pixel. The LCD panel utilizing this method only needs to add one gate line at each of the top and bottom of the panel to realize the AMVA structure of 8-domain for the LCD panel.
摘要:
Each pixel of an LCD display includes a main pixel, a sub-pixel, a resistor, and a third switch. The third switch is used for controlling the charging time of the main pixel and the sub-pixel. A data signal of a main pixel of a previous pixel is utilized to pre-charge the main pixel and the sub-pixel, and then data is transmitted to the sub-pixel and the main pixel. When data transmission to the sub-pixel is ended, the data transmission path to the sub-pixel is switched off, and the data keeps being transmitted only to the main pixel. The LCD panel utilizing this method only needs to add one gate line at each of the top and bottom of the panel to realize the AMVA structure of 8-domain for the LCD panel.
摘要:
An LCD device includes a plurality of first data lines, a plurality of second data lines, a plurality of display units, a source driver and a gate driver. Each of the second data lines is disposed between two corresponding first data lines, while each display unit is coupled to a corresponding first data line and a corresponding gate line or to a corresponding second data line and a corresponding gate line. The source driver is coupled to the plurality of first data lines and the plurality of second data lines for providing a plurality of data signals. Each of the data signals is outputted to a corresponding first data line during a first period in a write period, and outputted to a corresponding second data line during a second period in the write period.
摘要:
An LCD device includes a plurality of first data lines, a plurality of second data lines, a plurality of display units, a source driver and a gate driver. Each of the second data lines is disposed between two corresponding first data lines, while each display unit is coupled to a corresponding first data line and a corresponding gate line or to a corresponding second data line and a corresponding gate line. The source driver is coupled to the plurality of first data lines and the plurality of second data lines for providing a plurality of data signals. Each of the data signals is outputted to a corresponding first data line during a first period in a write period, and outputted to a corresponding second data line during a second period in the write period.
摘要:
A backlight module driving system and a driving method thereof are applied to a Liquid Crystal Display (LCD). In the LCD, a timing controller obtains a three-dimensional (3D) image signal provided by a graphics processor, generates a Liquid Crystal (LC) driving control signal, and generates a corresponding light adjusting signal according to a data writing time and a Vertical Blanking Interval (VBI) time of the LC driving control signal. A backlight driver obtains and analyzes the light adjusting signal, so as to disable a backlight module during the data writing time, and enable the backlight module during the VBI time.