摘要:
The invention relates to polyolefin copolymers (I) and to graft copolymers (II) which are prepared from the copolymers (I), wherein the copolymers (I) are linear copolymers containing divinylbenzene comonomer units selected from the group consisting of 1,4-divinylbenzene units, mixtures of 1,4- and 1,3-divinylbenzene units and mixtures of 1,4-, 1,3- and 1,2-divinylbenzene units, wherein R, in formulas I and II, is a C1 to C10 linear or branched alkyl group or a C6 to C10 substituted or unsubstituted aromatic group; and wherein G and G′, independently, are selected from —H, —OH, epoxy, —NH2, —COOH, anhydride, —Cl, —Br, —M, —COOM (M=metal) or a polymer chain having the molecular weight of at least about 500, which can be derived from both step and chain polymerization reactions. In the graft copolymer (II), the combined alpha-olefin mole % (x+y) is from about 50 and 99.9 mole %, the sum of x, y, m and n is 100%, n is at least 0.05%, and the backbone polymer chain has a number average molecular weight (Mn) of at least about 1,000.
摘要:
Functional polyolefin material containing a terminal styrene or styrene derivative unit and having the following molecular structure: in which polyolefin is a homopolymer or copolymer prepared by metallocene-mediated coordination polymerization of linear, branched or cyclic C3-C18 alpha-olefins and/or diolefins, in which the molecular weight of polyolefin segment is above 500 g/mole, preferably in the range between 10,000 to 1,000,000 g/mole, in which the number of methylene spacer units (n) is between 0 and 6, and preferably between 0 and 3, and in which X is a group selected from H, Cl, Br, I, OH, NH2, COOR, O—BR2, O—SiR3, N(SiR3)2, BR2, SiR3 (where R is a C1 to C10 linear, branched, cyclic or aromatic alkyl group), CH═CH2, COOH, COOLi, and succinic anhydride, is disclosed. Also disclosed is a process for preparing the functional polyolefin material.
摘要:
An exfoliated fluoropolymer/clay nanocomposite characterized by a featureless X-ray diffraction pattern is detailed including a reaction product of a clay and a chain-end functionalized fluoropolymer. The chain-end functionalized fluoropolymer has the formula: X-(M)n-Y (I), where M is one or more types of fluoromonomer unit; or a combination of one or more types of fluoromonomer unit and one or more types of hydrocarbon monomer unit. The variables X and Y are each independently H or a functional group capable of binding to the layered silicate clay, where at least one of X and Y is a functional group capable of binding to the layered silicate clay; and where n is an integer in the range of about 50 to 50,000, inclusive.
摘要:
PEMFCs based on perfluorinated ionomer membranes (such as NAFION) are limited to temperatures below 100° C. because of the critical dependence of NAFION conductivity on the stability of liquid water. Ion-conductive composite compositions provided by the present invention, ion exchange membranes including such composite compositions and fuel cells incorporating those membranes are capable of maintaining high conductivity and mechanical integrity when temperature is above 100° C.
摘要:
Polyolefin diblock copolymers are prepared via a chain transfer reaction with a borane dimer compound during a transition metal-catalyzed olefin polymerization in a process that resembles a transformation from transition metal coordination polymerization to free radical polymerization via a borane end group. The polyolefin diblock copolymers may be represented by the following formula: (Transition Metal Prepared Polyolefin)-b-(Free Radical Prepared Polymer), wherein the polyolefin segment is a homo-, co- and ter-polymer prepared by transition metal (especially metallocene catalyst) coordination polymerization of at least one olefin, and the free radical prepared polymer segment is prepared by free radical polymerization of at least one vinyl monomer, such as styrene, maleic anhydride, acrylates, methacrylates and their mixtures. The resulting diblock copolymers are useful as the interfacial materials to improve the interaction between polyolefins and other materials.
摘要:
Alpha-olefin oligomer is prepared by contacting an alpha-olefin monomer which contains from about 8 to about 16 carbon atoms with a heterogeneous catalyst system formed from (i) a solid olefin polymer having a linear backbone and a plurality of pendant omega-hydroxyalkyl groups, and (ii) a boron trihalide, preferably BF.sub.3. The catalyst system is stable and very reactive at relatively high temperatures, and the solid polymer of the catalyst system can be recovered and reused repeatedly in batch-type operations and can be used for long periods of time in continuous or semi-continuous operations.
摘要:
Immobilized Lewis acid catalysts comprising a polymer having at least one Lewis acid immobilized within the polymer structure, said polymer having the monomer units represented by the structural formula: ##STR1## where D is OR', NH.sub.2, NHR', OM' or OM"; E is at least one Lewis acid residue, R is an alkyl group or cycloalkyl group; R.sup.2 is a divalent hydrocarbyl group, R' is an alkyl, cycloalkyl, aryl or alkylaryl group, M' is an alkali metal and M" is an alkaline earth metal. The immobilized Lewis acid catalyst is useful in olefin polymerization and in alkylation or aromatic or isoparrafinic hydrocarbons with an olefin.
摘要:
Functional fluoro-monomers are polymerized with an organoborane functional initiator in the presence of oxygen to yield functional fluoropolymers and copolymers to produce functional polymers having functional groups at the beginning of the polymer chain.
摘要:
The invention relates to a process for preparing polyolefin graft copolymers (II) from linear and well defined polyolefin copolymers (I) containing divinylbenzene comonomer units, wherein R, in formulas I and II, is a C1 to C10 linear or branched alkyl group or a C6 to C10 substituted or unsubstituted aromatic group; and wherein G and G′, independantly, are selected from —H, —OH, epoxy, —NH2, —COOH, anhydride, —Cl, —Br, —M, —COOM (M=metal, e.g., Li, Na, K and Ca) or a polymer chain having the molecular weight of at least about 500, which can be derived from both step and chain polymerization reactions. G and G′ can be selected singly or in a combination of two or more thereof. In the graft copolymer composition, the combined alpha-olefin mole .% (x+y) is from about 50 to 99.9 mole %. Preferably, x+y is from 85 to 99.9 mole %, and most preferably x+y is from 95 to 99.9 mole %. The sum of x, y, m and n is 100%, and n is at least 0.05%. The molecular weight of backbone polymer chain has a number average molecular weight (Mn) of at least about 1,000, and preferably at least about 10,000.