Aluminum alloy pipe-shaped hollow material and piping material for heat exchanger

    公开(公告)号:US11220728B2

    公开(公告)日:2022-01-11

    申请号:US16619536

    申请日:2018-05-28

    Abstract: An aluminum alloy pipe-shaped hollow material is produced by porthole extrusion. The aluminum alloy pipe-shaped hollow material includes an Al—Mg-based alloy containing Mg of 0.7 mass % or more and less than 2.5 mass %, and Ti of more than 0 mass % and 0.15 mass % or less, with the balance being Al and unavoidable impurities. A work hardening coefficient n-value is 0.25 or more and less than 0.43. The aluminum alloy pipe-shaped hollow material has an inner-surface ridged structure inside thereof, and an area ratio of the inner-surface ridged structure in a cross-section orthogonal to an extending direction of the aluminum alloy pipe-shaped hollow material is 1 to 30%. The present invention can provide an aluminum alloy pipe-shaped hollow material that is an aluminum alloy pipe-shaped hollow material of a 5000 series aluminum alloy produced by porthole extrusion and has excellent bending processability.

    BRAZED ALUMINUM MEMBER AND METHOD FOR PRODUCING BRAZED PRODUCT

    公开(公告)号:US20230150069A1

    公开(公告)日:2023-05-18

    申请号:US17916436

    申请日:2021-03-26

    CPC classification number: B23K35/0238 B23K35/288 B23K2103/10

    Abstract: Provided is a brazed aluminum member brazed with a member formed of a brazing sheet, in which two or more grooves are provided on a surface of the brazed aluminum member in a fillet forming area, a groove depth (D1) of the grooves is 0.005 mm to 0.50 mm, a groove width (W1) of the grooves is 0.005 mm to 0.50 mm, a ratio (W1/D1) of the groove width (W1) to the groove depth (D1) is 10.00 or less, and a space (P1) between adjacent grooves is 0.00 mm to 0.30 mm. The present invention can provide an aluminum material and a method for producing a brazed product that can secure good brazing properties even when the clearance between the jointed members is large in the case where the aluminum material is brazed without using a flux.

    ALUMINUM ALLOY BRAZING SHEET AND METHOD FOR MANUFACTURING THE SAME

    公开(公告)号:US20220184750A1

    公开(公告)日:2022-06-16

    申请号:US17600705

    申请日:2020-04-03

    Abstract: An aluminum alloy brazing sheet used for brazing in an inert gas atmosphere without using a flux includes a brazing material cladded onto at least one side surface of a core material. An oxide is formed on a surface of the aluminum alloy brazing sheet by brazing heating, the oxide including any one or two or more of Mg, Li, and Ca and having a volume change ratio of 0.990 or less to a surface oxide film formed before brazing heating, and an atomic molar ratio of Mg, Li, and Ca to Al in the oxide formed on the surface of the aluminum alloy brazing sheet before brazing heating is 0.50 or less. The present invention provides an aluminum alloy brazing sheet having excellent brazability in brazing in an inert gas atmosphere without using a flux, and a method for manufacturing the same.

    ALUMINUM ALLOY BRAZING SHEET AND METHOD FOR PRODUCING SAME

    公开(公告)号:US20240416465A1

    公开(公告)日:2024-12-19

    申请号:US18704303

    申请日:2022-10-11

    Abstract: An aluminum alloy brazing sheet has a core material of the aluminum alloy brazing sheet formed of an aluminum alloy comprising 0.20 mass % to 1.00 mass % of Si, 0.10 mass % to 0.80 mass % of Mn, and 0.20 mass % to 1.00 mass % of Mg, having a value of Mn content/Si content of 0.10 or more and less than 1.00, a value of Mg content+Si content of 0.60 mass % or more and less than 1.60 mass %, a Fe content of 0.40 mass % or less, a Cu content of 0.25 mass % or less, a Cr content of 0.10 mass % or less, a Zn content of 2.00 mass % or less, a Ti content of 0.10 mass % or less, and a Zr content of 0.10 mass % or less, with the balance being Al and inevitable impurities.

    Method of manufacturing a brazing sheet

    公开(公告)号:US11571769B2

    公开(公告)日:2023-02-07

    申请号:US17268283

    申请日:2019-09-05

    Abstract: In a brazing sheet manufacturing method, a cladding slab is prepared by overlaying at least a core-material slab composed of an aluminum material and a filler-material slab composed of an Al—Si series alloy, in which a metal element that oxidizes more readily than Al is included in at least one of the slabs. A clad sheet is prepared by hot rolling this cladding slab, which then has at least a core material layer composed of the core-material slab and a filler material layer composed of the filler-material slab and disposed on at least one side of the core material. Then, a surface of the clad sheet is etched using a liquid etchant that contains an acid. Subsequently, the clad sheet is cold rolled to a desired thickness. In flux-free brazing, such a brazing sheet is capable of curtailing degradation in brazeability caused by fluctuations in dew point and oxygen concentration.

    ALUMINUM ALLOY MATERIAL AND PRODUCTION METHOD THEREFOR

    公开(公告)号:US20180347017A1

    公开(公告)日:2018-12-06

    申请号:US15777798

    申请日:2016-11-18

    CPC classification number: C22C21/00 C22C21/10 C22F1/00 C22F1/04 C22F1/053

    Abstract: An aluminum alloy material as one aspect of the present disclosure has a chemical composition including: Zn: more than 6.5% (mass %, same applies hereafter) and 8.5% or less; Mg: 0.5% or more and 1.5% or less; Cu: 0.10% or less; Fe: 0.30% or less; Si: 0.30% or less; Mn: less than 0.05%; Cr: less than 0.05%; Zr: 0.05% or more and 0.10% or less; and Ti: 0.001% or more and 0.05% or less, a balance including Al and inevitable impurities. In the aluminum alloy material, a mass ratio of Zn to Mg (Zn/Mg) is 5 or more and 16 or less, and a metallographic structure includes an equigranular recrystallized structure.

Patent Agency Ranking