摘要:
A method of making an aluminum airfoil includes brazing a first airfoil piece and a second airfoil piece together using a braze material that includes an element selected from magnesium and zinc, to form a braze joint between the first airfoil piece and the second airfoil piece. At least one of the first airfoil piece or the second airfoil piece has an aluminum alloy composition that includes greater than 0.8% by weight of zinc.
摘要:
Disclosed is an aluminum composite material including an aluminum alloy material containing magnesium, and a bonding material formed by brazing using a flux, the bonding material being adapted to bond the aluminum alloy material thereto. In the aluminum composite material, the bonding material contains a magnesium-containing compound other than KMgF3 and MgF2. The present invention provides an aluminum composite material with satisfactory brazeability to an aluminum alloy material containing magnesium, a heat exchanger including the aluminum composite material, and a flux suitable for use in braze.
摘要:
Provided in one embodiment is a method of forming a connection mechanism in or on a bulk-solidifying amorphous alloy by casting in or on, or forming with the bulk-solidifying amorphous alloy, a machinable metal. The connection mechanism can be formed by machining the machinable metal.
摘要:
A method of making an aluminum airfoil includes brazing a first airfoil piece and a second airfoil piece together using a braze material that includes an element selected from magnesium and zinc, to form a braze joint between the first airfoil piece and the second airfoil piece. At least one of the first airfoil piece or the second airfoil piece has an aluminum alloy composition that includes greater than 0.8% by weight of zinc.
摘要:
The invention pertains to a method for arc welding with a consumable electrode and with high deposition rates, wherein an alternating current is applied between the electrode and a work piece in order to generate the arc, wherein the alternating current has a current waveform that repeats itself after one period, and wherein the current waveform has at least one positive phase that is divided into at least one positive high-current phase and into at least one positive basic current phase and at least one negative phase within one period. According to the invention, the positive basic current phase is applied within the period after the positive high-current phase and a diffuse arc burns in the negative phase. In this case, it needs to be observed that the positive basic current phase is sufficiently long.
摘要:
Thermal stresses normally associated with joining are alleviated by a low temperature joining technique of the present invention. A low-temperature joining material is applied (as a paste, or as a powder spray, or as a tape, or as a paint, or as a putty) at the junction of two components desired to be joined together. Energy from a source such as a laser beam (for example an Nd:YAG or a CO.sub.2 laser) or by a flame, arc, plasma, or the like, is either "walked" along the joining material to react the entire amount of joining material, or the joining material is self-sustaining and simply requires igniting a selected portion of the joining material by the energy source. In an exemplary application of the process, vanes are brazed to the bowl and/or to the shroud of an automatic transmission bowl (impeller or turbine) assembly, preferably using the low-temperature joining material. Systems for delivering the joining material and the energy are described. The fabrication of hollow vanes is described. The fabrication of shroudless bowl components and stator components subsuming the function of the shroud are described.
摘要:
Disclosed is an aluminum composite material including an aluminum alloy material containing magnesium, and a bonding material formed by brazing using a flux, the bonding material being adapted to bond the aluminum alloy material thereto. In the aluminum composite material, the bonding material contains a magnesium-containing compound other than KMgF3 and MgF2. The present invention provides an aluminum composite material with satisfactory brazeability to an aluminum alloy material containing magnesium, a heat exchanger including the aluminum composite material, and a flux suitable for use in braze.
摘要:
A clad aluminum alloy material exhibiting favorable corrosion resistance and brazeability in an alkaline environment is shown by a clad aluminum alloy material with excellent brazeability and corrosion resistance in which one surface of an aluminum alloy core material is clad with a sacrificial anode material and the other surface is clad with brazing filler material. The core material includes an aluminum alloy of Si: 0.3-1.5%, Fe: 0.1-1.5%, Cu: 0.2-1.0%, Mn: 1.0-2.0%, and Si content+Fe content ≧0.8%, wherein the 1-20 μm equivalent circle diameter Al—Mn—Si—Fe-based intermetallic compound density is 3.0×105 to 1.0×106 pieces/cm2, and the 0.1μm to less than 1μm equivalent circle diameter Al—Mn—Si—Fe-based intermetallic compound density is at least 1.0×107pieces/cm2. The sacrificial anode material includes an aluminum alloy containing Si: 0.1-0.6%, Zn: 1.0-5.0%, and Ni: 0.1-2.0%.