Abstract:
An apparatus for depositing a coating on a part comprises: a chamber; a source of the coating material, positioned to communicate the coating material to the part in the chamber; a plurality of thermal hoods; and means for moving a hood of the plurality of thermal hoods from an operative position and replacing the hood with another hood of the plurality of hoods.
Abstract:
An apparatus for depositing a coating on a part comprises: a chamber; a source of the coating material, positioned to communicate the coating material to the part in the chamber; a plurality of thermal hoods; and means for moving a hood of the plurality of thermal hoods from an operative position and replacing the hood with another hood of the plurality of hoods.
Abstract:
An assembly is provided for a variable vane arrangement of a turbine engine. A platform extends circumferentially about a centerline and radially relative to the centerline between a first platform side and a second platform side. The platform includes a plurality of variable vane receptacles arranged in an annular array about the axial centerline, which variable vane receptacles include a first variable vane receptacle. The first variable vane receptacle is configured with a recess, a bore and a shelf. The recess extends longitudinally along a variable vane pivot axis into the platform from the first platform side to the shelf. The bore extends longitudinally along the variable vane pivot axis into the platform from the shelf. An insert includes a sleeve and a plate. The sleeve lines at least a portion of the bore. The plate is located within the recess adjacent the shelf.
Abstract:
An apparatus deposits a coating on a part. The apparatus comprises a chamber and a sting assembly for carrying the part. The sting assembly is shiftable between: an inserted condition where the sting assembly holds the part within the chamber for coating; and a retracted condition where the sting assembly holds the part outside of the chamber. The apparatus comprises a source of the coating material positioned to communicate the coating material to the part in the inserted condition. The apparatus comprises a thermal hood comprising a first member and a second member. The second member is between the first member and the part when the part is in the inserted condition. The second member is carried by the sting assembly so as to retract with the sting assembly as the sting assembly is retracted from the inserted condition to the retracted condition.
Abstract:
An assembly is provided for a variable vane arrangement of a turbine engine. A platform extends circumferentially about a centerline and radially relative to the centerline between a first platform side and a second platform side. The platform includes a plurality of variable vane receptacles arranged in an annular array about the axial centerline, which variable vane receptacles include a first variable vane receptacle. The first variable vane receptacle is configured with a recess, a bore and a shelf. The recess extends longitudinally along a variable vane pivot axis into the platform from the first platform side to the shelf. The bore extends longitudinally along the variable vane pivot axis into the platform from the shelf. An insert includes a sleeve and a plate. The sleeve lines at least a portion of the bore. The plate is located within the recess adjacent the shelf.
Abstract:
An apparatus for depositing a coating on a part comprises: a chamber; a source of the coating material, positioned to communicate the coating material to the part in the chamber; a plurality of thermal hoods; and means for moving a hood of the plurality of thermal hoods from an operative position and replacing the hood with another hood of the plurality of hoods.
Abstract:
A method includes generating a plasma plume with a plasma gun, delivering a plurality of coating materials to the plasma plume with a powder feeder assembly to vaporize the coating materials. The delivery includes delivering a first (bond coat) material from a first powder feeder to the plasma gun, ceasing delivery of the first material, increasing a rate of delivery of a second (rare earth stabilized zirconia) material from a second powder feeder to the plasma plume, increasing a rate of delivery of a third material (a rare earth stabilized zirconia material different from the second material) from a third powder feeder to the plasma plume, decreasing a rate of delivery of the second material, and decreasing a rate of delivery of the third material, and depositing the plurality of coating materials on a work piece to produce a layered coating with blended transitions between coating layers.
Abstract:
A multilayer coating includes a bond coat layer, a first barrier layer applied on the bond coat layer, and a second barrier layer applied on the first barrier layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different. The second barrier layer has a compositional gradient comprising a majority of the second rare earth stabilized zirconia material to 100 wt % of a third rare earth stabilized zirconia material away from the first barrier layer.
Abstract:
An apparatus for depositing a coating on a part comprises: a chamber; a source of the coating material, positioned to communicate the coating material to the part in the chamber; a plurality of thermal hoods; and means for moving a hood of the plurality of thermal hoods from an operative position and replacing the hood with another hood of the plurality of hoods.
Abstract:
A vapor deposition apparatus includes a chamber configured to operate at vacuum and at least one crucible in the chamber. The crucible is configured to receive an ingot, a feeder operable to move the ingot with respect to the at least one crucible, and a heater in the chamber and configured to heat a hot zone between the at least one crucible and the feeder. A method for vapor deposition is also disclosed.