Abstract:
An additive manufacturing method includes segmenting a CAD file of a component along a build interface to define at least a first component segment and a second component segment, each of the first component segment and the second component segment sized to fit within an additive manufacturing build chamber; additive manufacturing the first component segment and the second component segment within the build chamber; and bonding the first component segment and the second component segment to form the component.
Abstract:
An apparatus includes a component built by layer-by-layer additive manufacturing. An external structure is located on an external surface of the component. An internal structure is positioned within the component and is integrally formed to the external structure. The internal structure is made of a matrix structure, honeycomb structure, or lattice structure. The internal structure provides structural support, vibration dampening, heat transfer, energy absorption, fluid flow, or piping for the component.
Abstract:
A combustor for a gas turbine engine including a forward liner panel mounted to a support shell via a multiple of studs, the forward liner panel including an aft non-linear circumferential edge and an aft liner panel mounted to the support shell via a multiple of studs, the aft liner panel including a forward non-linear circumferential edge that is complementary to the aft non-linear circumferential edge.
Abstract:
In accordance with one aspect of the disclosure, a swirler is disclosed. The swirler may include an outer shroud and inner shroud. The inner shroud may be positioned radially inside the outer shroud. At least one of the outer shroud and inner shroud may have a major diameter which is larger than a minor diameter such that the shrouds define an oblong shape. The swirler may further include a plurality of vanes which may be positioned between the inner and outer shrouds.
Abstract:
Systems and methods are described herein whereby an air jet is configured to manipulate local aerodynamics and/or boundary layer flows associated with a dilution hole. A gas turbine component including a combustor panel, a dilution hole located within the combustor panel and an air jet located within the combustor panel positioned in close proximity to the dilution hole is described. The dilution hole is configured to produce a flow of cooling fluid. An air flow from the air jet is configured to deflect secondary flows produced within a combustor. The air jet is located close enough to a leading edge of the dilution hole such that the air flow from the air jet manipulates a pressure gradient of the dilution hole.
Abstract:
An additive manufacturing system includes a support structure defining a cavity. A movable platform is contained within the cavity, and is capable of moving along a build direction within the cavity. The movable platform is shaped to receive and hold a substrate that includes at least a portion of a finished part. The movable platform, in combination with the substrate, defines a working surface for building a finished product via additive manufacturing.
Abstract:
A unitary one-piece hub has first and second rings and a midsection arranged between the first and second rings. The midsection includes a plurality of windows configured to receive a plurality of cross members. The windows include a lip configured to surround the cross members. A gas turbine engine and a method of providing a hub for a gas turbine engine are also disclosed.
Abstract:
A method of coating a component having a multiple of cooling holes including removing at least a portion of a prior coating from a component; mapping a location of each of the multiple of cooling holes to generate a map of cooling holes; applying a coat to the component; adjusting the map of cooling holes to account for said coat to generate a adjusted map of cooling holes; and re-drilling the multiple of cooling holes in response to the adjusted map of cooling holes.
Abstract:
An ignition system for a combustor of a gas turbine engine is disclosed. The ignition system may include an igniter operatively associated with the combustor, and an electrode operatively associated with the combustor and spaced from the igniter, wherein an electrical potential is created between the igniter and the electrode to produce an electric arc therebetween.
Abstract:
A method of coating a component having a multiple of cooling holes includes removing at least a portion of a prior coating; directing a gas through at least one of the multiple of cooling holes; and applying a coat layer while directing the gas through at least one of the