Abstract:
Methods and apparatus for rack deployments for virtual computing environments are disclosed. An example method includes retrieving, from a repository remote from a system integrator, a software image to be deployed on a processing unit installed in a server rack, in response to receiving a dynamic host configuration protocol request from a processing unit at a virtual imaging appliance, detecting the processing unit and transmitting a network address to the processing unit to be utilized by the processing unit, transmitting the software image from the virtual imaging appliance to the network address assigned to the processing unit, and transmitting a hardware management system software image from the virtual imaging appliance to a network switch installed in the server rack to cause a hardware management system to be installed in the server rack.
Abstract:
Methods and apparatus to provision a workload in a virtual server rack deployment are disclosed. An example method includes determining, via a first resource manager executing on a processor, parameters of a request for allocating resources of a virtual server rack for performing a workload, determining logical computing resources to be utilized for performing the workload based on the parameters, determining first physical computing resources installed in a first physical rack and second physical computing resources installed in a second physical rack included in the virtual server rack to perform the determined logical computing resources, and instructing a first centralized manager of virtual hosts to provision the first physical computing resources into the logical computing resources to allocate the logical computing resources for performing the workload.
Abstract:
Methods and apparatus to transfer physical hardware resources between virtual rack domains in a virtualized server rack are disclosed. An example method includes determining, using a processor, a subset of candidate hosts that includes a host capacity that meets a first threshold, the candidate hosts belonging to a first virtual rack domain; determining, using the processor, whether the first virtual rack domain will meet an operating requirement of the first virtual rack domain if the subset of the candidate hosts is removed from the first virtual rack domain; and when the first virtual rack domain will meet the operating requirement if the subset of the candidate hosts is removed from the first virtual rack domain, transferring the subset of the candidate hosts from the first virtual rack domain to a second virtual rack domain.
Abstract:
Methods and apparatus to transfer physical hardware resources between virtual rack domains in a virtualized server rack are disclosed. An example method includes determining, using a processor, a subset of candidate hosts that includes a host capacity that meets a first threshold, the candidate hosts belonging to a first virtual rack domain; determining, using the processor, whether the first virtual rack domain will meet an operating requirement of the first virtual rack domain if the subset of the candidate hosts is removed from the first virtual rack domain; and when the first virtual rack domain will meet the operating requirement if the subset of the candidate hosts is removed from the first virtual rack domain, transferring the subset of the candidate hosts from the first virtual rack domain to a second virtual rack domain.
Abstract:
Methods, apparatus and articles of manufacture are disclosed to retire hosts in virtual server rack deployments for virtual computing environments. An example method includes determining, via a processor, a workload associated with a physical host in a virtualized rack in response to a request to retire the physical host, the workload implemented by a virtual computing environment including the virtualized rack. The example method also includes determining, via the processor, a projected impact of retiring the physical host on the workload. The example method also includes presenting information representative of the projected impact.
Abstract:
Methods and apparatus for rack deployments for virtual computing environments are disclosed. An example method includes retrieving, from a repository remote from a system integrator, a software image to be deployed on a processing unit installed in a server rack, in response to receiving a dynamic host configuration protocol request from a processing unit at a virtual imaging appliance, detecting the processing unit and transmitting a network address to the processing unit to be utilized by the processing unit, transmitting the software image from the virtual imaging appliance to the network address assigned to the processing unit, and transmitting a hardware management system software image from the virtual imaging appliance to a network switch installed in the server rack to cause a hardware management system to be installed in the server rack.
Abstract:
An example method includes configuring a network to facilitate communications between a first virtual resource manager (VRM) in a first physical rack and a second VRM in a second physical rack. The first VRM manages first physical resources in the first physical rack. The second VRM manages second physical resources in the second physical rack. A primary election process determines one of the first or second VRMs to operate as a primary VRM for a virtual server rack. The virtual server rack is based on the first physical resources and the second physical resources. When the first VRM is the elected primary VRM, the first VRM is registered as the primary VRM. When the first VRM is not the elected primary VRM, the first VRM is registered as a secondary VRM, and a watch object is created to monitor for a failure or unavailability of the primary VRM.
Abstract:
Methods and apparatus to manage virtual machines are disclosed. An example method includes determining that a deployment of a first virtual machine has halted because the first virtual machine is dependent on a second virtual machine that has not been fully deployed and in response to detecting that the second virtual machine has been deployed, notifying, via a processor, the first virtual machine that deployment of the first virtual machine may continue.
Abstract:
An example method to install a hardware management system on a management switch includes in response to a power-on event of a management switch, executing a boot loader on the management switch to boot an operating system on the management switch. The example method also includes obtaining from a virtual imaging appliance in communication with the management switch a uniform resource locator of a network-accessible location of installer software to install the hardware management system. The virtual imaging appliance is to configure a physical rack of hardware for use as a virtual server rack. The hardware management system is to manage the hardware for use in the virtual server rack.
Abstract:
An example method includes configuring a network to facilitate communications between a first virtual resource manager (VRM) in a first physical rack and a second VRM in a second physical rack. The first VRM manages first physical resources in the first physical rack. The second VRM manages second physical resources in the second physical rack. A primary election process determines one of the first or second VRMs to operate as a primary VRM for a virtual server rack. The virtual server rack is based on the first physical resources and the second physical resources. When the first VRM is the elected primary VRM, the first VRM is registered as the primary VRM. When the first VRM is not the elected primary VRM, the first VRM is registered as a secondary VRM, and a watch object is created to monitor for a failure or unavailability of the primary VRM.