摘要:
Apparatus and methods are provided for forming a channel in an organ or vessel to enhance perfusion therein. The apparatus may include a bioactive agent to stimulate tissue growth and vascularization in tissue adjacent to the channel. The apparatus includes a stent, suitable for percutaneous or intraoperative placement, that includes a tubular member having a plurality of tines, barbs, ribs or other structure to secure the stent at a desired position within tissue.
摘要:
Apparatus and methods for intraoperatively performing surgery to create transmural channels in tissue, for example, as in transmyocardial revascularization, are provided using apparatus having an end region containing a mechanical cutting head and means for articulating the end-region to access hard-to-reach portions of the anatomy. The handpiece is coupled by a disposable cable to a controller that houses a vacuum pump and mechanisms for driving the cutting head. The cutting head is adapted to cooperate with the vacuum pump to evacuate tissue severed during the channel forming process.
摘要:
Apparatus and methods for stimulating revascularization and tissue growth are provided using an apparatus having a directable end region carrying a tissue piercing end effector. The apparatus optionally includes electrodes for depositing RF energy to form a controlled degree of scar tissue formation, means for delivering a controlled amount of a bioactive agent at the treatment site, or both.
摘要:
Apparatus and methods for performing surgery within an organ or vessel are provided. A catheter is provided having a longitudinal axis and an end region carrying an end effector, the end region movable to a series of positions along the longitudinal axis and with an selectable orientation relative to the longitudinal axis. The catheter includes elements for stabilizing the end region of the apparatus within an organ or vessel, and for counteracting reaction forces developed during actuation of the end effector.
摘要:
Apparatus and methods for intraoperatively performing surgery to create transmural channels in tissue, for example, as in transmyocardial revascularization, are provided using apparatus including a single-use handpiece having a mechanical cutting head and means for stabilizing the cutting head in contact with the tissue. The handpiece is coupled by a disposable cable to a controller that houses a vacuum pump and mechanisms for driving the cutting head. The cutting head is adapted to cooperate with the vacuum pump to evacuate tissue severed during the channel forming process.
摘要:
Apparatus and methods for performing surgery within an organ or vessel are provided. A catheter is provided having a longitudinal axis and an end region carrying an end effector, the end region movable to a series of positions along the longitudinal axis and with an selectable orientation relative to the longitudinal axis. The catheter includes elements for stabilizing the end region of the apparatus within an organ or vessel, and for counteracting reaction forces developed during actuation of the end effector.
摘要:
Apparatus and methods for stimulating revascularization and tissue growth are provided using an apparatus having a directable end region carrying a tissue piercing end effector. The apparatus optionally includes electrodes for depositing RF energy to form a controlled degree of scar tissue formation, means for delivering a controlled amount of a bioactive agent at the treatment site, or both.
摘要:
The system (2) includes a catheter drive unit (22) and a catheter (24) extending therefrom movably mounted to a catheter drive sled (26). The catheter drive unit rotates and translates the catheter core (34) within the catheter sheath (36). The sled has a serrated, conical drive unit interface (82), with a bag-piercing tip (86) mateable with a translator drive ouput (92) so that a sterile drape (112) enclosing the catheter drive unit is automatically pierced when the catheter drive unit is mounted to the sled. A control unit (6) is spaced apart from the catheter drive unit and provides power and commands to the catheter drive unit and receives information and data from the catheter drive unit. The rotator and translator drive motors (54, 90) are operated from both the control unit and the catheter drive unit. Both the control unit and catheter drive unit have translation displacement displays (10, 30).
摘要:
An operative element mover (22) is used as a part of an ultrasound imaging or other catheter system (2) including a hollow sheath (6) and a case (16) housing a rotary driver (10). A drive cable or other connecting member (8) is disposed within the sheath with a transducer (24) at its distal end (26) and its proximal end (12) coupled to the rotary driver. The rotary driver rotates the transducer about the longitudinal axis (14) of the sheath. A hemostasis valve (50) anchors the sheath to the patient where the sheath enters the patient. The transducer mover (22) is used to move the drive cable along the longitudinal axis and includes a body (38) fixedly mountable to and dismountable from the case and a movable anchor post (40). The anchor post is clipped to the sheath and is moved by a sheath anchor drive (46) to translate the sheath from or toward the case. This causes the transducer to move within the sheath in a proximal or distal longitudinal direction (52).
摘要:
The system (2) includes a catheter drive unit (22) and a catheter (24) extending therefrom movably mounted to a catheter drive sled (26). The catheter drive unit rotates and translates the catheter core (34) within the catheter sheath (36). The sled has a serrated, conical drive unit interface (82), with a bag-piercing tip (86) mateable with a translator drive output (92) so that a sterile drape (112) enclosing the catheter drive unit is automatically pierced when the catheter drive unit is mounted to the sled. A control unit (6) is spaced apart from the catheter drive unit and provides power and commands to the catheter drive unit and receives information and data from the catheter drive unit. The rotator and translator drive motors (54, 90) are operated from both the control unit and the catheter drive unit. Both the control unit and catheter drive unit have translation displacement displays (10, 30).