Abstract:
A device may store first data structures that include first data identifying computing resources provided at an edge of a network for a computing environment. The device may store second data structures that include second data identifying aggregations of portions of the first data, and may store a third data structure that includes third data identifying an aggregation of the second data. The device may receive, from a first client device, client data identifying an address and resources associated with the first client device, and may update a first data structure based on the client data. The device may update a second data structure based on updating the first data structure, and may update the third data structure based on updating the second data structure. The device may provide a notification indicating that the first client device has been added as a computing resource for the computing environment.
Abstract:
A system may include a first device and a second device. The first device may be configured to select a second device for providing a first User Equipment device (UE) with media clips in accordance with Application Programming Interface (API) calls from a second UE. The second device may be configured to: receive a first API call from the second UE to generate and provide a media clip; generate the media clip; and send the generated media clip to the first UE.
Abstract:
A device obtains previously created data content. The device unmasks and extracts one or more chain of custody blocks stored in association with the data content. The one or more chain of custody blocks includes chain of custody data identifying who, when, where, and, with what hardware and/or software, created or edited the data content. The device analyzes the one or more chain of custody blocks and validates an origination of the data content based on the analysis of the one or more chain of custody blocks.
Abstract:
A device may include a memory storing instructions and processor configured to execute the instructions to receive a video image stream of a scene. The device may be further configured to perform person detection on the received video image stream to identify a plurality of persons; perform gesture detection on the received video image stream to identify a gesture; select a person from the plurality of persons to associate with the identified gesture; and use the identified gesture to enable the selected person to control an object or area displayed on a video screen associated with the scene.
Abstract:
A wireless network optimizing node receives key performance indicators (KPIs) from a base station of a cell site providing wireless service within a geographic area, wherein the KPIs are associated with wireless communication between beams of an antenna array of the cell site and User Equipment. The node determines a current cell site capacity usage for the cell site based on current wireless network usage parameters received from the cell site and determines a need for an additional antenna array to provide adequate coverage and capacity for the geographic area based on the current cell site capacity usage and the first KPIs. The node determines an optimum location within the geographic area for adding the additional antenna array.
Abstract:
Network conditions are taken into consideration, by wireless edge devices, when streaming content, such as video content, over a wireless network. A video capture device, such as a video recorder, may be controlled, by the edge device, to adjust the bit rate, capture resolution, or other parameters relating to upload bandwidth of the video stream. The wireless edge device may transcode the video stream received from the capture device to adjust the encoding technique for the video stream. Advantageously, the wireless network and edge devices may work together to offer optimal video quality that fits within required network constraints.
Abstract:
A device may obtain information. The information may represent a distance between a first user device and a second user device. The first user device and the second user device may share a destination address. The device may receive a first message associated with a call. The first message may be received based on the call having been made to the destination address. The device may determine, based on the information, whether to provide a second message associated with the call or a notification associated with the call. The device may selectively provide the second message or the notification based on determining whether to provide the second message or the notification.
Abstract:
A smart hook system for a store display including a hook configured to hang smart items having a resistor and a capacitor for display in a store. The hook at least one resistive electrical contact configured to come into electrical circuit contact with the resistor of the smart items hanging on the hook, and at least one capacitive electrical contact configured to come into electrical contact with the capacitor of the smart items that are hanging on hook. The smart hook also includes a processor configured to measure the resistance and capacitance of the smart items that are hanging on hook, and determine a quantity of the smart items hanging on the hook and identity of the smart items hanging on the hook based on the measured resistance and capacitance.
Abstract:
Examples are provided that enable a cellular network location assist to confirm a position determined using a sensor of a mobile device. As a result of global positioning system signals becoming unavailable due to the mobile device traveling indoors, the mobile device implements a sensor-based position determination that provides a position of the mobile device as the mobile device travels about a location. In order to confirm the reliability of the sensor-based position determination, the mobile device, after passage of time or after traveling some estimated distance, requests location assistance indications from the cellular network. A processor of the mobile device receives the location assistance indications and generates a directional vector based on several of the location assistance indications. Using the directional vector, the processor confirms the reliability of the dead reckoning position.
Abstract:
A network device in a Multi-Access Edge Computing (MEC) cluster is configured to: receive, from a wireless station, information associated with a User Equipment (UE) device that is wirelessly attached to a network through the wireless station and estimate a first time interval to complete a task for the UE device based on the information. If the first time interval is less than a threshold time interval, the processor is to: signal, through the wireless station, to the UE device to be in a connected state; execute the task; and send a result of the execution, through the wireless station, to the UE device.