摘要:
The present invention relates to methods and apparatus for activation of a low reactivity, non-polar chemical compound. In one example embodiment, the method comprises introducing the low reactivity chemical compound to a catalyst. At least one of (a) an oxidizing agent or a reducing agent and (b) a polar compound is provided to the catalyst and the chemical compound. An alternating current is applied to the catalyst to produce an activation reaction in the chemical compound. This activation reaction produces a useful product.
摘要:
The present invention relates to methods and apparatus for activation of a low reactivity, non-polar chemical compound. In one example embodiment, the method comprises introducing the low reactivity chemical compound to a catalyst. At least one of (a) an oxidizing agent or a reducing agent and (b) a polar compound is provided to the catalyst and the chemical compound. An alternating current is applied to the catalyst to produce an activation reaction in the chemical compound. This activation reaction produces a useful product. The present invention also relates to a method for oxidizing aromatic compounds by electrocatalysis to oxidized products.
摘要:
The present invention relates to methods and apparatus for activation of a low reactivity, non-polar chemical compound. In one example embodiment, the method comprises introducing the low reactivity chemical compound to a catalyst. At least one of (a) an oxidizing agent or a reducing agent and (b) a polar compound is provided to the catalyst and the chemical compound. An alternating current is applied to the catalyst to produce an activation reaction in the chemical compound. This activation reaction produces a useful product.
摘要:
A system and method for controlling a power storage device through the Stimulation and Intensification of Interfacial Processes (SIIP) is provided. A signal generator can provide a low voltage sinusoidal AC signal across a battery terminal, or other reactor vessel, during charging and discharging states. For example, the battery/reactor vessel can be of Li-ion and NiMH designs, a fuel cell, a Zn—O cell, or other devices that have features of rechargeable batteries. The output of the signal generator (i.e., voltage, wave type, and frequency) can be controlled based on battery parameters (e.g., internal resistance, output power, temperature). The internal resistance of the battery can be reduced, and the discharge time can be increased. Elastic waves can also be provided to a battery/reactor vessel to stimulate the interfacial processes. The signal generator can be an integrated circuit which is packaged with the battery and can be powered by the battery.
摘要:
The present invention provides methods and systems for controlling a catalytic process. The control system includes: an electroconductive support having a layer of a catalyst thereon; a first electrode in contact with said electroconductive support; a second electrode in contact with said catalyst layer; a current control unit for applying a current to said first and second electrodes and for controlling and varying the amount of current applied; an impedance measurement unit for continuously, monitoring and measuring the polarization impedance across an interface between the catalyst layer and the electroconductive support; a processing-unit for comparing the measured polarization impedance with a reference value. The amount of current applied to the catalyst layer and the electroconductive support via the first and second electrodes is varied to change the polarization impedance when the measured polarization impedance differs from the reference value.
摘要:
Methods and apparatus for controlling a catalytic layer deposition process are provided. A feed stream comprising a carbon source is provided to a catalyst layer. An asymmetrical alternating current is applied to the catalyst layer. A polarization impedance of the catalyst layer is monitored. The polarization impedance can be controlled by varying the asymmetrical alternating current. The controlling of the polarization impedance provides control over the structure and amount of carbon particles deposited on the catalyst layer. The carbon particles may be in the form of nanotubes, fullerenes, and/or nanoparticles.
摘要:
The present invention provides methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination. An alternating current is applied to a catalyst layer and a polarization impedance of the catalyst layer is monitored. The polarization impedance may be controlled by varying the asymmetrical alternating current. At least one of water, oxygen, steam and heat may be provided to the catalyst layer to enhance an oxidation reaction for soot elimination and/or to regenerate the catalyst.
摘要:
The present invention provides methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination. An alternating current is applied to a catalyst layer and a polarization impedance of the catalyst layer is monitored. The polarization impedance may be controlled by varying the asymmetrical alternating current. At least one of water, oxygen, steam and heat may be provided to the catalyst layer to enhance an oxidation reaction for soot elimination and/or to regenerate the catalyst.
摘要:
A system and method for controlling a power storage device through the Stimulation and Intensification of Interfacial Processes (SIIP) is provided. A signal generator can provide a low voltage sinusoidal AC signal across a battery terminal, or other reactor vessel, during charging and discharging states. For example, the battery/reactor vessel can be of Li-ion and NiMH designs, a fuel cell, a Zn—O cell, or other devices that have features of rechargeable batteries. The output of the signal generator (i.e., voltage, wave type, and frequency) can be controlled based on battery parameters (e.g., internal resistance, output power, temperature). The internal resistance of the battery can be reduced, and the discharge time can be increased. Elastic waves can also be provided to a battery/reactor vessel to stimulate the interfacial processes. The signal generator can be an integrated circuit which is packaged with the battery and can be powered by the battery.
摘要:
The present invention provides methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination. An alternating current is applied to a catalyst layer and a polarization impedance of the catalyst layer is monitored. The polarization impedance may be controlled by varying the asymmetrical alternating current. At least one of water, oxygen, steam and heat may be provided to the catalyst layer to enhance an oxidation reaction for soot elimination and/or to regenerate the catalyst.