摘要:
Polarization self-modulation of a laser produces high-frequency optical modulation without the use of high-speed electronics. This is accomplished by inserting into a laser cavity a polarization converter, which rotates the polarization of the laser light periodically as the light passes through the converter as it circulates in the cavity. The frequency of the modulation is determined by the cavity length. In one configuration, a quarter-wave retardation plate is used as the intracavity polarization converter in a Fabry-Perot laser. In a second embodiment, the converter is an electro-optic crystal which acts as an electronically-controllable half-wave retardation plate.
摘要:
A diffractive optical element has a diffraction grating which multiplexes light beams of different wavelengths, and the diffraction grating has a binary structure in which the diffraction surface top part and the diffraction surface bottom part repeat a concave and convex shape through a rising surface part along an optical axis direction P. The diffraction surface top part and the diffraction surface bottom part are inclined to the rising surface part. By this diffractive optical element, the diffraction angle of the light beam is maintained, and the diffraction efficiency of the light beam can be improved. By using this diffractive optical element in an optical communication module, while the separation angle of the light beam of the different wavelength is maintained, the signal receiving performance is increased.
摘要:
An optical multiplex communication system includes a multiplexer and a demultiplexer. In the multiplexer, one of two modulated optical pulse train signals is attenuated by an optical attenuator so that amplitudes of the two signals differ from each other. Then, the two signals are time-division multiplexed to produce a multiplexed optical pulse train signal. In the demultiplexer, a VD detector indirectly derives the amplitude of the extracted optical pulse train signal and outputs it to a comparator. A VR detector derives the mean amplitude of the multiplexed optical pulse train signal and outputs it to the comparator. Based on the inputted amplitudes, the comparator identifies the extracted optical pulse train signal. A controller and a mixer control the signal extraction timing such that the extracted optical pulse train signal as identified by the comparator agrees with selection designated by an externally inputted select signal.
摘要:
A developing apparatus has a developer carrying member for carrying a developer thereon and conveying it to a developing area opposed to an image bearing member, an agitating member for agitating the developer to be supplied to the developer carrying member and a stripping device for stripping off the developer having passed the developing area from the developer carrying member wherein the developer stripped off from the developer carrying member by the stripping device is guided to a position farther from the developer carrying member than a position at which the agitating member is disposed.
摘要:
A diffractive optical element 1 has a diffraction grating which multiplexes the light beam of the different wavelength, and the diffraction grating is structured by a binary structure in which the diffraction surface top part 2 and the diffraction surface bottom part 4 repeat the concave and convex shape through a rising surface 3 part along the optical axis direction P, and the diffraction surface top part and the diffraction surface bottom part are inclined to the rising surface part. By this diffractive optical element 1, the diffraction angle of the light beam is maintained, and the diffraction efficiency of the light beam can be improved. Then, by using this diffractive optical element 1, the optical communication module in which, while the separation angle of the light beam of the different wavelength is maintained, the signal receiving performance is increased, can be provided.
摘要:
An optical bidirectional module 10 having therein light emitting element 11 which transmits optical signal to the end facet of the optical fiber, light receiving element 12 which receives optical signal from the end facet of the optical fiber and stair-shaped multi-level grating 15, wherein the stair-shaped multi-level grating separates the first light path between the end facet of optical fiber and the light emitting element and the second light path between the end facet of optical fiber and the light receiving element by a different wavelength of each optical signal, when the module mixes and separates optical signal with different wavelengths traveling in opposite directions related to the end facet of the optical fiber 1, used for bidirectional optical fiber communication by means of a wavelength multiplex system.
摘要:
A fixing device which can be employed in an image forming apparatus controls energization of a heater which heats a fixing device, and a detector for detecting the condition of fixing operations such as the temperature of the fixing device, energizing time of the heater, types of transfer sheets to be used, and the number of previously performed fixing operations. A controller selects from plural kinds of temperature control on the basis of the condition detected by the detector, and controls energization and temperature of the heater during fixing operation including a backward revolution of the fixing device which is performed after an image is fixed. With the above constitution, both an excellent fixing property of a thick transfer sheet in low temperature environment and prevention against curls and wrinkles of thin transfer sheets in high temperature environment can be realized.
摘要:
Provided is a spectrometer capable of separating a particular wavelength component from light including a plurality of wavelength components by means of a small, simple configuration. The spectrometer comprises a filter part configured to transmit a specific wavelength component of light incident onto an incident surface. An illuminating means is configured to cause the light to be incident at respectively different incident angles onto a plurality of incident positions at different positions in the longer direction of the incident surface.
摘要:
Methods of optimizing optical alignment in an optical package are provided. In one embodiment, the optical package includes a laser diode, a wavelength conversion device, coupling optics positioned along an optical path extending from the laser diode to the wavelength conversion device, and one or more adaptive actuators. The method involves adjusting the optical alignment of the wavelength conversion device in a non-adaptive degree of freedom by referring to a thermally-dependent output intensity profile of the laser diode and a thermally-dependent coupling efficiency profile of the optical package. The adjustment in the non-adaptive degree of freedom is quantified such that, over a given operating temperature range of the optical package, portions of the coupling efficiency profile characterized by relatively low coupling efficiency offset portions of the output intensity profile characterized by relatively high laser output intensity and portions of the coupling efficiency profile characterized by relatively high coupling efficiency offset portions of the output intensity profile characterized by relatively low laser output intensity. Additional embodiments are disclosed and claimed.
摘要:
The present invention is provided to obtain an inexpensive bidirectional optical module wherein a diffraction efficiency can be maximized at different diffraction order for light beam with different wavelength, and light usage efficiency is enhanced. The bidirectional optical module includes a light-emitting element for transmitting an optical signal toward an end of an optical fiber; a light-receiving element for receiving an optical signal from the end of the optical fiber; and a grating in which stair shapes are repeated with a predefined pitch. In the bidirectional optical module, a phase function is defined as phase-difference contour lines which is formed by making two light fluxes from predetermined positions interfere with each other on a surface arranged at a position of the grating. A planar pitch of the grating is formed such that values of the phase function form phase contour lines each representing an integer multiple of 360 degrees.