摘要:
The present disclosure relates to semiconductor tool monitoring system having multiple sensors configured to concurrently and independently monitor processing conditions of a semiconductor manufacturing tool. In some embodiments, the disclosed tool monitoring system comprises a first sensor system configured to monitor one or more processing conditions of a semiconductor manufacturing tool and to generate a first monitoring response based thereupon. A redundant, second sensor system is configured to concurrently monitor the one or more processing conditions of the manufacturing tool and to generate a second monitoring response based thereupon. A comparison element is configured to compare the first and second monitoring responses, and if the responses deviate from one another (e.g., have a deviation greater than a threshold value) to generate a warning signal. By comparing the first and second monitoring responses, errors in the sensor systems can be detected in real time, thereby preventing yield loss.
摘要:
The present disclosure relates to semiconductor tool monitoring system having multiple sensors configured to concurrently and independently monitor processing conditions of a semiconductor manufacturing tool. In some embodiments, the disclosed tool monitoring system comprises a first sensor system configured to monitor one or more processing conditions of a semiconductor manufacturing tool and to generate a first monitoring response based thereupon. A redundant, second sensor system is configured to concurrently monitor the one or more processing conditions of the manufacturing tool and to generate a second monitoring response based thereupon. A comparison element is configured to compare the first and second monitoring responses, and if the responses deviate from one another (e.g., have a deviation greater than a threshold value) to generate a warning signal. By comparing the first and second monitoring responses, errors in the sensor systems can be detected in real time, thereby preventing yield loss.
摘要:
A thin film deposition system and method provide for multiple target assemblies that may be separately powered. Each target assembly includes a target and associated magnet or set of magnets. The disclosure provides a tunable film profile produced by multiple power sources that separately power the target arrangements. The relative amounts of power supplied to the target arrangements may be customized to provide a desired film and may be varied in time to produce a film with varied characteristics.
摘要:
A method of forming an interlevel dielectric slayer of spin-on-glass is described which avoids spiral defects from occurring in the layer of spin-on-glass. Before the spin-on-glass is deposited and with the wafer spinning at a low angular velocity a first volume of isopropyl alcohol is deposited on the wafer. The wafer continues to spin at the low angular velocity for a short time. With the wafer continuing to spin at the low angular velocity a second volume, less than the first volume, of spin-on-glass is deposited on the wafer. The wafer continues to spin at the low angular velocity for a short time and then is spun at a high angular velocity for a longer time. The wafer is then removed from the apparatus used to deposit the spin-on-glass and processing of the wafer continues. Spiral defects in the layer of spin-on-glass are avoided.