摘要:
The present invention relates to a vehicle mountable satellite antenna as defined in the claims which is operable while the vehicle is in motion. The satellite antenna of the present invention can be installed on top of (or embedded into) the roof of a vehicle. The antenna is capable of providing high gain and a narrow antenna beam for aiming at a satellite direction and enabling broadband communication to vehicle. The present invention provides a vehicle mounted satellite antenna which has low axial ratio, high efficiency and has low grating lobes gain. The vehicle mounted satellite antenna of the present invention provides two simultaneous polarization states. In one embodiment, the present invention provides a ridged waveguide instead of a conventional rectangular waveguide to alleviate the effects of grating lobes. The ridge waveguide provides a ridged section longitudinally between walls forming the waveguide. A plurality of radiating elements are formed in a radiating surface of the ridged waveguide.
摘要:
In one aspect, a hybrid energy harvesting device is presented that comprises a photovoltaic device having a substrate that forms a first side of the photovoltaic device. The substrate has a surface through which photons can pass to produce an electrical current within the photovoltaic device. An electrical storage device is located on a second side of the photovoltaic device that opposes the first side, and an antenna is located on one of the first or second sides of the photovoltaic device. The photovoltaic device and the antenna are electrically coupled to the electrical storage device.
摘要:
The present invention relates to a vehicle mountable satellite antenna as defined in the claims which is operable while the vehicle is in motion. The satellite antenna of the present invention can be installed on top of (or embedded into) the roof of a vehicle. The antenna is capable of providing high gain and a narrow antenna beam for aiming at a satellite direction and enabling broadband communication to vehicle. The present invention provides a vehicle mounted satellite antenna which has low axial ratio, high efficiency and has low grating lobes gain. The vehicle mounted satellite antenna of the present invention provides two simultaneous polarization states. In one embodiment, an inverted L-shaped waveguide has a first wall extending vertically downward from a top surface. The top surface can include a ridge portion. The top surface includes a plurality of radiating elements for forming a radiating surface.
摘要:
The present invention relates to a vehicle mountable satellite antenna as defined in the claims which is operable while the vehicle is in motion. The satellite antenna of the present invention can be installed on top of (or embedded into) the roof of a vehicle. The antenna is capable of providing high gain and a narrow antenna beam for aiming at a satellite direction and enabling broadband communication to vehicle. The present invention provides a vehicle mounted satellite antenna which has low axial ratio, high efficiency and has low grating lobes gain. The vehicle mounted satellite antenna of the present invention provides two simultaneous polarization states. In one embodiment, a hybrid mechanic and electronic steering approach provides a more reasonable cost and performance trade-off. The antenna aiming in the elevation direction is achieved via control of an electronic beamforming network. The antenna is mounted on a rotatable platform under mechanical steering and motion control for aiming the antenna in the azimuth direction. Such approach significantly reduces the complexity and increases the reliability of the mechanical design. The antenna height is compatible to the two-dimensional electronic steering phased-array antenna. Additionally, the number of the electronic processing elements required is considerably reduced from that of the conventional two-dimensional electronic steering phased-array antenna, thereby allowing for low cost and large volume commercial production. The present invention provides electronically generated left, right, up, and down beams for focusing the antenna beam toward the satellite while the vehicle is moving. All of the beams are simultaneously available for use in the motion beam tracking. This provides much faster response and less signal degradation.
摘要:
The present invention relates to a vehicle mountable satellite antenna as defined in the claims which is operable while the vehicle is in motion. The satellite antenna of the present invention can be installed on top of (or embedded into) the roof of a vehicle. The antenna is capable of providing high gain and a narrow antenna beam for aiming at a satellite direction and enabling broadband communication to vehicle. The present invention provides a vehicle mounted satellite antenna which has low axial ratio, high efficiency and has low grating lobes gain. The vehicle mounted satellite antenna of the present invention provides two simultaneous polarization states. In one embodiment, the present invention provides a ridged waveguide instead of a conventional rectangular waveguide to alleviate the effects of grating lobes. The ridge waveguide provides a ridged section longitudinally between walls forming the waveguide. A plurality of radiating elements are formed in a radiating surface of the ridged waveguide.
摘要:
The present invention relates to a vehicle mountable satellite antenna as defined in the claims which is operable while the vehicle is in motion. The satellite antenna of the present invention can be installed on top of (or embedded into) the roof of a vehicle. The antenna is capable of providing high gain and a narrow antenna beam for aiming at a satellite direction and enabling broadband communication to vehicle. The present invention provides a vehicle mounted satellite antenna which has low axial ratio, high efficiency and has low grating lobes gain. The vehicle mounted satellite antenna of the present invention provides two simultaneous polarization states. In one embodiment, an inverted L-shaped waveguide has a first wall extending vertically downward from a top surface. The top surface can include a ridge portion. The top surface includes a plurality of radiating elements for forming a radiating surface.
摘要:
The present invention relates to a vehicle mountable satellite antenna as defined in the claims which is operable while the vehicle is in motion. The satellite antenna of the present invention can be installed on top of (or embedded into) the roof of a vehicle. The antenna is capable of providing high gain and a narrow antenna beam for aiming at a satellite direction and enabling broadband communication to vehicle. The present invention provides a vehicle mounted satellite antenna which has low axial ratio, high efficiency and has low grating lobes gain. The vehicle mounted satellite antenna of the present invention provides two simultaneous polarization states. In one embodiment, a hybrid mechanic and electronic steering approach provides a more reasonable cost and performance trade-off. The antenna aiming in the elevation direction is achieved via control of an electronic beamforming network. The antenna is mounted on a rotatable platform under mechanical steering and motion control for aiming the antenna in the azimuth direction. Such approach significantly reduces the complexity and increases the reliability of the mechanical design. The antenna height is compatible to the two-dimensional electronic steering phased-array antenna. Additionally, the number of the electronic processing elements required is considerably reduced from that of the conventional two-dimensional electronic steering phased-array antenna, thereby allowing for low cost and large volume commercial production. The present invention provides electronically generated left, right, up, and down beams for focusing the antenna beam toward the satellite while the vehicle is moving. All of the beams are simultaneously available for use in the motion beam tracking. This provides much faster response and less signal degradation.