Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
    2.
    发明授权
    Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions 有权
    形成掺杂半导体薄膜,掺杂半导体薄膜结构,掺杂硅烷组合物的方法和制备这种组合物的方法

    公开(公告)号:US08372194B1

    公开(公告)日:2013-02-12

    申请号:US12020481

    申请日:2008-01-25

    IPC分类号: C09D183/16

    摘要: Methods for forming doped silane and/or semiconductor thin films, doped liquid phase silane compositions useful in such methods, and doped semiconductor thin films and structures. The composition is generally liquid at ambient temperatures and includes a Group IVA atom source and a dopant source. By irradiating a doped liquid silane during at least part of its deposition, a thin, substantially uniform doped oligomerized/polymerized silane film may be formed on a substrate. Such irradiation is believed to convert the doped silane film into a relatively high-molecular weight species with relatively high viscosity and relatively low volatility, typically by cross-linking, isomerization, oligomerization and/or polymerization. A film formed by the irradiation of doped liquid silanes can later be converted (generally by heating and annealing/recrystallization) into a doped, hydrogenated, amorphous silicon film or a doped, at least partially polycrystalline silicon film suitable for electronic devices. Thus, the present invention enables use of high throughput, low cost equipment and techniques for making doped semiconductor films of commercial quality and quantity from doped “liquid silicon.”

    摘要翻译: 用于形成掺杂的硅烷和/或半导体薄膜的方法,用于这种方法的掺杂的液相硅烷组合物,以及掺杂的半导体薄膜和结构。 组合物在环境温度下通常是液体,并且包括IVA族原子源和掺杂剂源。 通过在其沉积的至少一部分期间照射掺杂的液体硅烷,可以在衬底上形成薄的,基本上均匀的掺杂的低聚/聚合的硅烷膜。 据信这种照射将掺杂的硅烷膜转化成相对高分子量的物质,具有相对较高的粘度和较低挥发性,通常通过交联,异构化,低聚和/或聚合。 通过掺杂的液体硅烷的照射形成的膜可以随后通过加热和退火/重结晶转化成掺杂的,氢化的非晶硅膜或适用于电子器件的掺杂的至少部分多晶的硅膜。 因此,本发明能够使用高通量,低成本的设备和技术来制造掺杂的液态硅具有商业质量和数量的掺杂半导体膜。

    Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
    4.
    发明授权
    Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions 有权
    形成掺杂半导体薄膜,掺杂半导体薄膜结构,掺杂硅烷组合物的方法和制备这种组合物的方法

    公开(公告)号:US07314513B1

    公开(公告)日:2008-01-01

    申请号:US10949013

    申请日:2004-09-24

    IPC分类号: C09D183/16

    摘要: Methods for forming doped silane and/or semiconductor thin films, doped liquid phase silane compositions useful in such methods, and doped semiconductor thin films and structures. The composition is generally liquid at ambient temperatures and includes a Group IVA atom source and a dopant source. By irradiating a doped liquid silane during at least part of its deposition, a thin, substantially uniform doped oligomerized/polymerized silane film may be formed on a substrate. Such irradiation is believed to convert the doped silane film into a relatively high-molecular weight species with relatively high viscosity and relatively low volatility, typically by cross-linking, isomerization, oligomerization and/or polymerization. A film formed by the irradiation of doped liquid silanes can later be converted (generally by heating and annealing/recrystallization) into a doped, hydrogenated, amorphous silicon film or a doped, at least partially polycrystalline silicon film suitable for electronic devices. Thus, the present invention enables use of high throughput, low cost equipment and techniques for making doped semiconductor films of commercial quality and quantity from doped “liquid silicon.”

    摘要翻译: 用于形成掺杂的硅烷和/或半导体薄膜的方法,用于这种方法的掺杂的液相硅烷组合物,以及掺杂的半导体薄膜和结构。 组合物在环境温度下通常是液体,并且包括IVA族原子源和掺杂剂源。 通过在其沉积的至少一部分期间照射掺杂的液体硅烷,可以在衬底上形成薄的,基本上均匀的掺杂的低聚/聚合的硅烷膜。 据信这种照射将掺杂的硅烷膜转化成相对高分子量的物质,具有相对较高的粘度和较低挥发性,通常通过交联,异构化,低聚和/或聚合。 通过掺杂的液体硅烷的照射形成的膜可以随后通过加热和退火/重结晶转化成掺杂的,氢化的非晶硅膜或适用于电子器件的掺杂的至少部分多晶的硅膜。 因此,本发明能够使用高通量,低成本的设备和技术来制造掺杂的“液态硅”具有商业质量和数量的掺杂半导体膜。

    Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions
    6.
    发明授权
    Methods of forming a doped semiconductor thin film, doped semiconductor thin film structures, doped silane compositions, and methods of making such compositions 有权
    形成掺杂半导体薄膜,掺杂半导体薄膜结构,掺杂硅烷组合物的方法和制备这种组合物的方法

    公开(公告)号:US07981482B1

    公开(公告)日:2011-07-19

    申请号:US11455976

    申请日:2006-06-19

    IPC分类号: C08J7/06

    摘要: Methods for forming doped silane and/or semiconductor thin films, doped liquid phase silane compositions useful in such methods, and doped semiconductor thin films and structures. The composition is generally liquid at ambient temperatures and includes a Group IVA atom source and a dopant source. By irradiating a doped liquid silane during at least part of its deposition, a thin, substantially uniform doped oligomerized/polymerized silane film may be formed on a substrate. Such irradiation is believed to convert the doped silane film into a relatively high-molecular weight species with relatively high viscosity and relatively low volatility, typically by cross-linking, isomerization, oligomerization and/or polymerization. A film formed by the irradiation of doped liquid silanes can later be converted (generally by heating and annealing/recrystallization) into a doped, hydrogenated, amorphous silicon film or a doped, at least partially polycrystalline silicon film suitable for electronic devices. Thus, the present invention enables use of high throughput, low cost equipment and techniques for making doped semiconductor films of commercial quality and quantity from doped “liquid silicon.”

    摘要翻译: 用于形成掺杂的硅烷和/或半导体薄膜的方法,用于这种方法的掺杂的液相硅烷组合物,以及掺杂的半导体薄膜和结构。 组合物在环境温度下通常是液体,并且包括IVA族原子源和掺杂剂源。 通过在其沉积的至少一部分期间照射掺杂的液体硅烷,可以在衬底上形成薄的,基本上均匀的掺杂的低聚/聚合的硅烷膜。 据信这种照射将掺杂的硅烷膜转化成相对高分子量的物质,具有相对较高的粘度和较低挥发性,通常通过交联,异构化,低聚和/或聚合。 通过掺杂的液体硅烷的照射形成的膜可以随后通过加热和退火/重结晶转化成掺杂的,氢化的非晶硅膜或适用于电子器件的掺杂的至少部分多晶的硅膜。 因此,本发明能够使用高通量,低成本的设备和技术来制造掺杂的“液态硅”具有商业质量和数量的掺杂半导体膜。

    Polysilane compositions, methods for their synthesis and films formed therefrom
    8.
    发明授权
    Polysilane compositions, methods for their synthesis and films formed therefrom 有权
    聚硅烷组合物,其合成方法和由其形成的薄膜

    公开(公告)号:US07485691B1

    公开(公告)日:2009-02-03

    申请号:US11246014

    申请日:2005-10-06

    摘要: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane generally has the formula H—[(AHR)n(c-AmHpm−2)q]—H, where each instance of A is independently Si or Ge; R is H, —AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)≧10 if q=0, q≧3 if n=0, and (n+q)≧6 if both n and q≠0; p is 1 or 2; and m is from 3 to 12. In one aspect, the method generally includes the steps of combining a silane compound of the formula AHaR14−a, the formula AkHgR1′h and/or the formula c-AmHpmR1rm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. In another aspect, the method includes the steps of halogenating a polyarylsilane to form a halopolysilane; and reducing the halopolysilane with a metal hydride to form the polysilane. The synthesis of semiconductor inks via dehydrocoupling of silanes and/or germanes allows for tuning of the ink properties (e.g., viscosity, boiling point, and surface tension) and for deposition of silicon films or islands by spincoating, inkjetting, dropcasting, etc., with or without the use of UV irradiation.

    摘要翻译: 公开了聚硅烷,含有它们的油墨及其制备方法。 聚硅烷通常具有式H - [(AHR)n(c-AmHpm-2)q] -H,其中A的每个实例独立地为Si或Ge; R是H,-AaHa + 1Ra,卤素,芳基或取代的芳基; (n + a)> = 10,如果n = 0,则q> = 3,如果n和q <0,则(n + q)> = 6。 p为1或2; 一方面,该方法通常包括将式AHaR14-a,式AkHgR1'h和/或式c-AmHpmR1rm的硅烷化合物与式R4xR5yMXz的催化剂组合的步骤 (或其固定化的衍生物)以形成聚(芳基)硅烷; 然后用水性洗涤组合物洗涤聚(芳基)硅烷,并使聚(芳基)硅烷与吸附剂接触以除去金属M.另一方面,该方法包括卤化聚芳基硅烷以形成卤代聚硅烷的步骤; 并用金属氢化物还原卤代聚硅烷以形成聚硅烷。 通过硅烷和/或锗烷的脱氢耦合来合成半导体油墨允许调节油墨性能(例如粘度,沸点和表面张力)以及通过旋涂,喷墨,滴浇等沉积硅膜或岛, 有或没有使用紫外线照射。

    Polysilane compositions, methods for their synthesis and films formed therefrom
    9.
    发明授权
    Polysilane compositions, methods for their synthesis and films formed therefrom 有权
    聚硅烷组合物,其合成方法和由其形成的薄膜

    公开(公告)号:US08455604B1

    公开(公告)日:2013-06-04

    申请号:US13543557

    申请日:2012-07-06

    IPC分类号: C08G77/00 C07F7/02 C07F7/21

    摘要: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane may have the formula H-[(AHR)n(c-AmHpm-2)q]—H, where A is independently Si or Ge; R is H, -AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)≧10 if q=0, q≧3 if n=0, and (n+q)≧6 if both n and q≠0; p is 1 or 2; and m is from 3 to 12. The method may include combining a silane compound of the formula AHaR14-a, AkHgR1′h and/or c-AmHpmR1rm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. Alternatively, the method may include halogenating a polyarylsilane and reducing the halopolysilane with a metal hydride to form the polysilane.

    摘要翻译: 公开了聚硅烷,含有它们的油墨及其制备方法。 聚硅烷可以具有式H - [(AHR)n(c-AmHpm-2)q] -H,其中A独立地为Si或Ge; R是H,-AaHa + 1Ra,卤素,芳基或取代的芳基; (n + a)> = 10,如果n = 0,则q> = 3,如果n和q <0,则(n + q)> = 6。 p为1或2; 该方法可以包括将式AHaR14-a,AkHgR1'h和/或c-AmHpmR1rm的硅烷化合物与式R4xR5yMXz的催化剂(或其固定化的衍生物)组合以形成聚 (芳基)硅烷; 然后用水性洗涤组合物洗涤聚(芳基)硅烷并将聚芳基硅烷与吸附剂接触以除去金属M.或者,该方法可以包括用聚合芳基硅烷卤化并用金属氢化物还原卤代聚硅烷以形成 聚硅烷。

    Polysilane compositions, methods for their synthesis and films formed therefrom

    公开(公告)号:US07491782B1

    公开(公告)日:2009-02-17

    申请号:US11893054

    申请日:2007-08-13

    IPC分类号: C08G77/00 C08G77/04 C08G77/12

    摘要: Polysilanes, inks containing the same, and methods for their preparation are disclosed. The polysilane generally has the formula H—[(AHR)n(c-AmHpm−2)q]—H, where each instance of A is independently Si or Ge; R is H, —AaHa+1Ra, halogen, aryl or substituted aryl; (n+a)≧10 if q=0, q≧3 if n=0, and (n+q)≧6 if both n and q≠0; p is 1 or 2; and m is from 3 to 12. In one aspect, the method generally includes the steps of combining a silane compound of the formula AHaR14−a, the formula AkHgR1′h and/or the formula c-AmHpmR1rm with a catalyst of the formula R4xR5yMXz (or an immobilized derivative thereof) to form a poly(aryl)silane; then washing the poly(aryl)silane with an aqueous washing composition and contacting the poly(aryl)silane with an adsorbent to remove the metal M. In another aspect, the method includes the steps of halogenating a polyarylsilane to form a halopolysilane; and reducing the halopolysilane with a metal hydride to form the polysilane. The synthesis of semiconductor inks via dehydrocoupling of silanes and/or germanes allows for tuning of the ink properties (e.g., viscosity, boiling point, and surface tension) and for deposition of silicon films or islands by spincoating, inkjetting, dropcasting, etc., with or without the use of UV irradiation.