摘要:
Provided are an EEPROM cell, an EEPROM device, and methods of manufacturing the EEPROM cell and the EEPROM device. The EEPROM cell is formed on a substrate including a first region and a second region. A first EEPROM device having a first select transistor and a first memory transistor is disposed in the first region, while a second EEPROM device having a second select transistor and a second memory transistor is disposed in the second region. In the first region, a first drain region and a second floating region are formed apart from each other. In the second region, a second drain region and a second floating region are formed apart from each other. A first impurity region, a second impurity region, and a third impurity region are disposed in a common source region between the first and second regions of the substrate. The first and third impurity regions form a DDD structure, and the first and second impurity region form an LDD structure. That is, the first impurity region completely surrounds the second and third impurity regions in horizontal and vertical directions, the second impurity region surrounds the third impurity region in a horizontal direction, and the junction depth of the third impurity is greater than that of the second impurity region.
摘要:
Provided are an EEPROM cell, an EEPROM device, and methods of manufacturing the EEPROM cell and the EEPROM device. The EEPROM cell is formed on a substrate including a first region and a second region. A first EEPROM device having a first select transistor and a first memory transistor is disposed in the first region, while a second EEPROM device having a second select transistor and a second memory transistor is disposed in the second region. In the first region, a first drain region and a second floating region are formed apart from each other. In the second region, a second drain region and a second floating region are formed apart from each other. A first impurity region, a second impurity region, and a third impurity region are disposed in a common source region between the first and second regions of the substrate. The first and third impurity regions form a DDD structure, and the first and second impurity region form an LDD structure. That is, the first impurity region completely surrounds the second and third impurity regions in horizontal and vertical directions, the second impurity region surrounds the third impurity region in a horizontal direction, and the junction depth of the third impurity is greater than that of the second impurity region.
摘要:
Provided are an EEPROM cell, an EEPROM device, and methods of manufacturing the EEPROM cell and the EEPROM device. The EEPROM cell is formed on a substrate including a first region and a second region. A first EEPROM device having a first select transistor and a first memory transistor is disposed in the first region, while a second EEPROM device having a second select transistor and a second memory transistor is disposed in the second region. In the first region, a first drain region and a second floating region are formed apart from each other. In the second region, a second drain region and a second floating region are formed apart from each other. A first impurity region, a second impurity region, and a third impurity region are disposed in a common source region between the first and second regions of the substrate. The first and third impurity regions form a DDD structure, and the first and second impurity region form an LDD structure. That is, the first impurity region completely surrounds the second and third impurity regions in horizontal and vertical directions, the second impurity region surrounds the third impurity region in a horizontal direction, and the junction depth of the third impurity is greater than that of the second impurity region.
摘要:
Provided are an EEPROM cell, an EEPROM device, and methods of manufacturing the EEPROM cell and the EEPROM device. The EEPROM cell is formed on a substrate including a first region and a second region. A first EEPROM device having a first select transistor and a first memory transistor is disposed in the first region, while a second EEPROM device having a second select transistor and a second memory transistor is disposed in the second region. In the first region, a first drain region and a second floating region are formed apart from each other. In the second region, a second drain region and a second floating region are formed apart from each other. A first impurity region, a second impurity region, and a third impurity region are disposed in a common source region between the first and second regions of the substrate. The first and third impurity regions form a DDD structure, and the first and second impurity region form an LDD structure. That is, the first impurity region completely surrounds the second and third impurity regions in horizontal and vertical directions, the second impurity region surrounds the third impurity region in a horizontal direction, and the junction depth of the third impurity is greater than that of the second impurity region.
摘要:
In a nonvolatile semiconductor memory device, and a method of fabricating the same, the nonvolatile semiconductor memory device includes a cell doping region and source/drain regions in a semiconductor substrate, the cell doping region being doped as a first conductive type, a channel region disposed between the source/drain regions in the semiconductor substrate, a tunnel doping region of the first conductive type formed in a predetermined region of an upper portion of the cell doping region, the tunnel doping region being doped in a higher concentration than that of the cell doping region, a tunnel insulating layer formed on a surface of the semiconductor substrate on the tunnel doping region, a gate insulating layer surrounding the tunnel insulating layer and covering the channel region and the cell doping region exposed beyond the tunnel doping region, and a gate electrode covering the tunnel insulating layer and on the gate insulating layer.
摘要:
A method of manufacturing a NOR-type mask ROM device includes forming a first gate electrode for an OFF cell and a second gate electrode for an ON cell on a semiconductor substrate of a first conductivity type. To code the mask ROM device, a plurality of source/drain regions is formed by implanting impurities of a second conductivity type, opposite the first conductivity type, into the semiconductor substrate adjacent only to one side of the first gate electrode and adjacent to both sides of the second gate electrode. To prevent misalignment of a bit line contact hole with a contact region, additional impurities are implanted only into a bit line contact region of the mask ROM device region. When a semiconductor device formed on the same substrate as the mask ROM device includes a double diffused region, additional implantation for both may be realized simultaneously.
摘要:
A method of manufacturing a NOR-type mask ROM device includes forming a first gate electrode for an OFF cell and a second gate electrode for an ON cell on a semiconductor substrate of a first conductivity type. To code the mask ROM device, a plurality of source/drain regions is formed by implanting impurities of a second conductivity type, opposite the first conductivity type, into the semiconductor substrate adjacent only to one side of the first gate electrode and adjacent to both sides of the second gate electrode. To prevent misalignment of a bit line contact hole with a contact region, additional impurities are implanted only into a bit line contact region of the mask ROM device region. When a semiconductor device formed on the same substrate as the mask ROM device includes a double diffused region, additional implantation for both may be realized simultaneously.
摘要:
In a nonvolatile semiconductor memory device, and a method of fabricating the same, the nonvolatile semiconductor memory device includes a cell doping region and source/drain regions in a semiconductor substrate, the cell doping region being doped as a first conductive type, a channel region disposed between the source/drain regions in the semiconductor substrate, a tunnel doping region of the first conductive type formed in a predetermined region of an upper portion of the cell doping region, the tunnel doping region being doped in a higher concentration than that of the cell doping region, a tunnel insulating layer formed on a surface of the semiconductor substrate on the tunnel doping region, a gate insulating layer surrounding the tunnel insulating layer and covering the channel region and the cell doping region exposed beyond the tunnel doping region, and a gate electrode covering the tunnel insulating layer and on the gate insulating layer.
摘要:
A method of manufacturing a NOR-type mask ROM device includes forming a first gate electrode for an OFF cell and a second gate electrode for an ON cell on a semiconductor substrate of a first conductivity type. To code the mask ROM device, a plurality of source/drain regions is formed by implanting impurities of a second conductivity type, opposite the first conductivity type, into the semiconductor substrate adjacent only to one side of the first gate electrode and adjacent to both sides of the second gate electrode. To prevent misalignment of a bit line contact hole with a contact region, additional impurities are implanted only into a bit line contact region of the mask ROM device region. When a semiconductor device formed on the same substrate as the mask ROM device includes a double diffused region, additional implantation for both may be realized simultaneously.
摘要:
A method of manufacturing a NOR-type mask ROM device includes forming a first gate electrode for an OFF cell and a second gate electrode for an ON cell on a semiconductor substrate of a first conductivity type. To code the mask ROM device, a plurality of source/drain regions is formed by implanting impurities of a second conductivity type, opposite the first conductivity type, into the semiconductor substrate adjacent only to one side of the first gate electrode and adjacent to both sides of the second gate electrode. To prevent misalignment of a bit line contact hole with a contact region, additional impurities are implanted only into a bit line contact region of the mask ROM device region. When a semiconductor device formed on the same substrate as the mask ROM device includes a double diffused region, additional implantation for both may be realized simultaneously.