摘要:
The invention relates to an electro-hydraulic control system for a power drive unit having a wobbler controlled variable displacement hydraulic motor wherein the electro-hydraulic control system causes the displacement of the hydraulic motor to match a load to be driven by a power drive unit output shaft coupled to the motor. The system results in the hydraulic motor displacement matching the load as a combined function of the input command signal, the actual wobbler position, as well as the velocity and position of the power drive unit output shaft.
摘要:
A rotor position determination and tracking system for a dynamo electric machine includes a first AC power supply to inject a carrier wave into a main stator of the dynamoelectric machine and a second AC power supply to inject an excitation voltage or current into an exciter stator of the dynamo electric machine. A plurality of current sensors and voltage sensors located at the exciter input lines sense current and voltage thereat. A first control logic receives the sensed current and voltage and outputs an estimated rotor position. A second control logic receives an estimated exciter field voltage or current rotating wave form angle and filtered sensed current or voltage signals from the first control logic and utilizes a known main stator carrier frequency to determine the rotor position. The rotor position is input into the first control logic to calibrate the first control logic for tracking of the true rotor position.
摘要:
A motor generator system (120) in accordance with the invention includes a prime mover (21) for driving an output shaft (18), a main motor generator (105), having a rotor driven by the output shaft, for producing electrical power on at least one output winding (36a-36c) in response to the prime mover rotating the output shaft and for driving the output shaft in response to operation as a motor; an exciter (102) for applying excitation to a field winding (34) of the main motor generator during operation for producing electrical power on the at least one output winding and for applying current to the field winding of the main motor and generator to produce a magnetic field in the field winding during operation of the main motor generator as a motor; circuitry (122), responsive to current in a field winding (204) of the exciter, for producing an output signal representing a position of the rotor of the main motor generator driven by the output shaft; and a main inverter (114), responsive to the output signal, for commutating application of electrical current to the at least one output winding to control operation of the main motor generator during operation as a motor.
摘要:
A detector for detecting rotor position of a brushless generator includes a shaft pulse encoder which develops a cycle pulse once per revolution of a motive power shaft and a circuit coupled to armature phase windings of a permanent magnet generator of the brushless generator for deriving a number of interval pulses per revolution of the motive power shaft. A circuit measures time periods between adjacent interval pulses and the measured time periods are converted into an indication of the angular position of the motive power shaft.
摘要:
A control for operating an electromagnetic machine in a starting mode of operation detects a magnitude of a parameter of power applied to an armature winding of the electromagnetic machine relative to a stationary frame of reference and converts the detected parameter magnitude into field and torque producing components relative to a rotating frame of reference. A power source coupled to the armature winding is controlled during operation in the starting mode such that a rotor of the machine is accelerated.
摘要:
Harmonics in the AC output power of an inverter are sensed and are compared to corresponding references to produce a plurality of errors. These errors are used to produce a harmonic waveform which is in turn used in a triangular waveform PWM pulse generator to generate PWM pulses. The PWM pulses control the inverter so as to convert DC power into AC power and so as to reduce harmonics in the AC power.
摘要:
A rotor position determination and tracking system for a dynamo electric machine includes a first AC power supply to inject a carrier wave into a main stator of the dynamoelectric machine and a second AC power supply to inject an excitation voltage or current into an exciter stator of the dynamoelectric machine. A plurality of current sensors and voltage sensors located at the exciter input lines sense current and voltage thereat. A first control logic receives the sensed current and voltage and outputs an estimated rotor position. A second control logic receives an estimated exciter field voltage or current rotating wave form angle and filtered sensed current or voltage signals from the first control logic and utilizes a known main stator carrier frequency to determine the rotor position. The rotor position is input into the first control logic to calibrate the first control logic for tracking of the true rotor position.
摘要:
A generator control unit (GCU) provides active damping of a synchronous generator by monitoring the speed of the synchronous generator and detecting oscillations in the monitored speed. The oscillations are indicative of torsional oscillations within the mechanical drivetrain including the synchronous generator or generators. In response to detected oscillations in the monitored speed, the GCU generates a varying set-point value that is used to control the excitation voltage provided to the synchronous generator. Varying the excitation voltage provided to the synchronous generator causes a variation in synchronous generator torque. By selectively varying the torque in the synchronous generator, the GCU provides active damping in the synchronous generator that decreases or dampens the torsional oscillations.
摘要:
For a multiphase alternating current (AC) wound field synchronous machine (WFSM) that has a stator with a selected number of poles, the WFSM having an associated exciter and multiphase AC permanent magnet machine (PMM) directly coupled to the WFSM, a method of sensing the position of a rotor in the WFSM comprises the steps of: configuring a stator for the PMM to have a number of poles that is a sub-multiple of the selected number of WFSM stator poles; configuring a rotor for the PMM to have high saliency; applying multiphase AC power of a selected frequency to the PMM stator: detecting at least one set of stator harmonic currents of the multiphase AC power resulting from the rotor saliency; converting the detected PMM harmonic stator currents from their multiphase coordinates to αβ coordinates; rotating the converted PMM stator currents into a reference frame for at least one selected harmonic to generate αβ coordinate harmonic current vectors; and estimating the position of the WFSM rotor based on the values of the αβ coordinate harmonic current vectors in the selected harmonic reference frame.
摘要:
A shaft sensorless rotor angular position and velocity sensing system for a ynamoelectric machine that includes: a reference frame transformation function for transforming measured currents and potentials applied to a stator of the dynamoelectric machine to a two-phase α-β stationary frame to produce transformed currents Iα,Iβ and transformed potentials Vα,Vβ; first and second multipliers to produce signals Iα*RS,Iβ*RS; first and second summers to produce signals Vα,−Iα*RS,Vβ−Iβ*RS; first and second lag functions to produce signals 1 s + ω i ( V α - I α * R s ) , 1 s + ω i ( V β - I β * R s ) ; third and fourth multipliers to produce signals Iα*Lq,Iβ*Lq; third and fourth summers to produce signals 1 s + ω i ( V α - I α * R s ) - I α * L q , 1 s + ω i ( V β - I β * R s ) - I β * L q that correspond to extended rotor flux values λext—α,λext—β; and a phase lock loop (PLL) to derive estimated rotor angular position and velocity values {circumflex over (θ)}, {circumflex over (ω)} for the dynamoelectric machine from the extended rotor flux values λext—α,λext—β.