摘要:
The invention relates to a medical imaging system having a generation apparatus for continuous image data from successive examination images, having an encoding apparatus for the image data for the purpose of compression on the basis of the method of prediction, having an evaluation apparatus for physiological, periodic data for the purpose of determining the repetition rate thereof, and having a memory apparatus for the compressed image data, where the encoding apparatus is connected to the evaluation apparatus, which controls the latter such that the prediction is matched dynamically to the period length of the physiological data. The use of the information from the ECG signal, for example, for the purpose of compressing the original material provides a dynamic frame rate and also the opportunity to control the dependencies of the prediction such that a minimal memory requirement is obtained without loss of data.
摘要:
The embodiments relate to pixel-prediction methods and devices that are based on one of a selection of one out of at least two model functions that provide a prediction function and an adaptive model function that is capable to predict intensity characteristics of reference pixels used for prediction.
摘要:
A prediction error (eq[x,y]) is added to a predicted frame ({circumflex over (f)}[x,y]) or a predicted block for receiving a decoded frame (gq[x,y]) or a decoded block to be further used in a prediction loop by an encoder or to be sent to the output of a decoder. The reference frame (gq[x,y]) or the reference block includes a useful signal part and a noise signal part. The reference frame (gq[x,y]) or reference block pass through a dedicated noise reducing filter to reduce or eliminate the noise signal part of the reference frame (gq[x,y]) or reference block.
摘要:
For a compressed video stream formed of a sequence of compressed data packets, each compressed packet is assigned to a frame by processing the undecoded data packet. A frame includes packets. A first plurality of frames is assigned to a first sliding window and a second plurality of frames is assigned to a second sliding window. The first and second sliding windows have different frames. A first window indicator is calculated by determining a first indicator representing an average number of packets per frame within the first window, and/or a second indicator representing size information of the data within the first window. A second window indicator is calculated by determining a third indicator representing an average number of packets per frame within the second window, and/or a fourth indicator representing size information of the data within the second window. The first and the second window indicators are compared.
摘要:
For an edge image block, the DC part of the encoding information of the picture elements contained in the edge image block is separately determined and is subtracted from the encoding information of the picture elements of the edge image block, as a result whereof an enhanced coding efficiency is achieved.
摘要:
An input data stream coded using a first coding method and containing at least one coded digitized image is converted into an output data stream that is coded using a second coding method. The input data stream has first intra-blocks, each of which is coded in a first prediction mode of a plurality of first intra-prediction modes, and the output data stream has second intra-blocks, each of which is coded in a second prediction mode of a plurality of second intra-protection modes. The second prediction modes of one or more second intra-blocks are determined with the aid of the first prediction modes for one or more first intra-blocks and the second intra-blocks are coded using the second prediction modes that are thus determined. In particular, prediction errors that are assigned to the first intra-blocks are taken into consideration for the determination of the second prediction modes.
摘要:
The embodiments relate to pixel-prediction methods and devices that are based on one of a selection of one out of at least two model functions that provide a prediction function and an adaptive model function that is capable to predict intensity characteristics of reference pixels used for prediction.
摘要:
A prediction error (eq[x,y]) is added to a predicted frame ({circumflex over (f)}[x,y]) or a predicted block for receiving a decoded frame (gq[x,y]) or a decoded block to be further used in a prediction loop by an encoder or to be sent to the output of a decoder. The reference frame (gq[x,y]) or the reference block includes a useful signal part and a noise signal part. The reference frame (gq[x,y]) or reference block pass through a dedicated noise reducing filter to reduce or eliminate the noise signal part of the reference frame (gq[x,y]) or reference block.
摘要:
An input data stream coded using a first coding method and containing at least one coded digitized image is converted into an output data stream that is coded using a second coding method. The input data stream has first intra-blocks, each of which is coded in a first prediction mode of a plurality of first intra-prediction modes, and the output data stream has second intra-blocks, each of which is coded in a second prediction mode of a plurality of second intra-protection modes. The second prediction modes of one or more second intra-blocks are determined with the aid of the first prediction modes for one or more first intra-blocks and the second intra-blocks are coded using the second prediction modes that are thus determined. In particular, prediction errors that are assigned to the first intra-blocks are taken into consideration for the determination of the second prediction modes.
摘要:
Where a quantized data value is produced by a first quantization of an input data value, followed by a first inverse quantization and subsequently by a second quantization and the first quantization has first quantization intervals and the second quantization has second quantization intervals, third quantization intervals are generated by displacing interval boundaries of the second quantization intervals, respectively, to the next interval boundaries of the first quantization intervals. A third reconstruction value is determined for the third quantization intervals such that the third reconstruction value lies within the associated third quantization intervals. A corrected data value is generated by a third inverse quantization of the quantized data value and the third inverse quantization is affirmed by the third quantization intervals containing the associated third reconstruction value.