摘要:
Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m 2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR′2)MQn (1) or by the formula: B′(Cp′R′aR′b)(Fl′)M′Q′n′ (2) In the formulas Cp and Cp′ are substituted cyclopentadienyl groups, Fl and Fl′ are fluorenyl groups, and B and B′ are structural bridges. R′ are substituents at the 2 and 7 positions, Ra and R′a are substituents distal to the bridge, and Rb and R′b are proximal to the bridge. M and M′ are transition metals, Q′ is a halogen or a C1-C4 alkyl group; and n′ is an integer of from 0-4.
摘要:
Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR′2)MQn (1) or by the formula: B′(Cp′R′aR′b)(Fl′)M′Q′n′ (2) In the formulas Cp and Cp′ are substituted cyclopentadienyl groups, Fl and Fl′ are fluorenyl groups, and B and B′ are structural bridges. R′ are substituents at the 2 and 7 positions, Ra and R′a are substituents distal to the bridge, and Rb and R′b are proximal to the bridge. M and M′ are transition metals, Q′ is a halogen or a C1-C4 alkyl group; and n′ is an integer of from 0-4.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
Method employing a supported metallocene catalyst composition in the production of an isotactic ethylene propylene co-polymer. The composition comprises a metallocene component supported on a particulate silica support having average particle size of 10-40 microns, a pore volume of 1.3-1.6 ml/g, a surface area of 200-400 m2/g. An alkylalumoxane cocatalyst component is incorporated on the support. The isospecific metallocene is characterized by the formula: B(CpRaRb)(FlR′2)MQn (1) or by the formula: B′(Cp′R′aR′b)(Fl′)M′Q′n′ (2) In the formulas Cp and Cp′ are substituted cyclopentadienyl groups, Fl and Fl′ are fluorenyl groups, and B and B′ are structural bridges. R′are substituents at the 2 and 7 positions, Ra and R′a are substituents distal to the bridge, and Rb and R′b are proximal to the bridge. M and M′ are transition metals, Q′ is a halogen or a C1-C4 alkyl group; and n′ is an integer of from 0-4.
摘要:
Propylene polymerization processes, polymers and films formed therefrom are described herein. The propylene polymerization processes generally include contacting propylene and an amount of ethylene with a first metallocene catalyst and a second metallocene catalyst within a polymerization reaction vessel to form a propylene based polymer, wherein the amount is an amount effective to form the propylene based polymer including from about 2 wt. % to about 6 wt. % ethylene, the second metallocene catalyst is capable of incorporating a greater amount of ethylene into the propylene based polymer than the first metallocene catalyst and wherein the first metallocene catalyst is capable of forming a propylene/ethylene random copolymer exhibiting a melting temperature that is greater than that of a propylene/ethylene random copolymer formed from the second metallocene catalyst.
摘要:
A process for preparing low melting copolymers comprising contacting a mixture of olefin monomers with a CpFlu-type metallocene catalyst under reaction conditions sufficient to form a copolymer. The copolymers thus prepared desirably display melt temperatures from about 100° C. to about 140° C. and may be produced with reduced amounts of ethylene. The copolymers may also exhibit reduced levels of undesirable xylene solubles, relatively narrow molecular weight distribution, and other improved optical and physical properties.
摘要:
The invention is directed to a metallocene catalyst system comprising an inert silica support having pores with a peak pore volume of greater than about 0.115 mL/g at a pore diameter between about 250 Angstroms and about 350 Angstroms, and an alumoxane activator, with the metallocene being bound substantially throughout the support. The activator is grafted to the support in a solvent at a reflux temperature of toluene to obtain an aluminoxane on silica, and a metallocene component is added to make a MCS having a metallocene loading of about 2 wt %. This facilitates the production of metallocene catalyst systems having increased catalytic activity than previously recognized that is at least about 20 percent higher than the catalytic activity for a metallocene loading of about 1 wt % where the activator is grafted to the support at room temperature.
摘要:
The tendency of copolymer fluff grains of propylene and ethylene to agglomerate is reduced by injecting at least one olefin comonomer, such as ethylene monomer, into more than one point along the length of the reactor, rather than injecting all of the ethylene at one point. This process reduces the tendency of copolymer fluff grains to agglomerate and cause processing problems as compared with injecting the comonomer at only one point. Copolymer made by this process is expected to have lower substantially amorphous polypropylene content and better organoleptics than copolymer made where the ethylene is injected at only one point. In one non-limiting embodiment the copolymerization reactor is a loop-type reactor.