摘要:
An optical transceiver includes structures that define an electrical connector port for allowing connection of an electrical connector to an optical subassembly of the transceiver, and structures that define a vent surrounding at least portions of the connector port, whereby the vent allows bidirectional passage of air therethrough. Included in the transceiver are structures that define electromagnetic interference shielding and selectively transfer heat of heat generating electronic components by conduction to a transceiver housing. Methods of cooling the transceiver by ventilation and internal heat conduction are present.
摘要:
A method of cooling an optical transceiver that is mountable in a wall opening and a method of cooling a data transfer system in combination with an optical transceiver is described. An optical transceiver is provided that has a form factor and one end portion that is insertable within a wall opening in a wall. Ambient air is ventilated over a major surface portion of the optical transceiver by mounting said end portion to the wall opening so that at least one vent is formed within confines of the wall opening. The vent allows air to pass between the exterior and interior of the enclosure, and over the major surface portion of the optical transceiver.
摘要:
An optical transceiver includes structures that define an electrical connector port for allowing connection of an electrical connector to an optical subassembly of the transceiver, and structures that define a vent surrounding at least portions of the connector port, whereby the vent allows bidirectional passage of air therethrough. Included in the transceiver are structures that define electromagnetic interference shielding and selectively transfer heat of heat generating electronic components by conduction to a transceiver housing. Methods of cooling the transceiver by ventilation and internal heat conduction are present.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
Improved methods, systems, and apparatuses are disclosed for testing LGA devices. One example embodiment include vertical routing of test nest assembly cooling lines in order to minimize the test nest footprint and increase available test sites on a single test card. Another example embodiment includes isolating and adjusting external loads and moments into the heatsink/cold plate, wherein these loads and moments involve controlling the centroid to restore more ideal thermal performance of the heatsink/chip interface. Still another example embodiment includes a nest architecture facilitating easy and low-cost replacement of LGA sockets. Finally, another example embodiment includes efficient condensation control of test nest assembly parts by using dry-air exhaust.
摘要:
A common heatsink for multiple chips and modules which are spaced on electronic packages, and an arrangement for the formation of precision gaps intermediate two or more chips or modules covered by a common heatsink. Furthermore, a precision tool enables positioning of a common heatsink for multiple chips and modules for electronic packages facilitating the formation of x, y and z-directional compliant thermal interfaces intermediate a plurality of chips and a common heatsink with minimized effects of package tolerances.
摘要:
A cooling assembly for an integrated circuit chip module wherein an evaporator-cooled IC module is enclosed within an insulated housing which is surrounded by an atmosphere of dehumidified air.
摘要:
An apparatus and a method of mounting an array of different heatsinks to a closely packed array of processors, cache controller devices, and any other type of data processing element utilized within a data processing system. The apparatus includes a metal frame with multiple apertures in the bottom to allow access to the tops of the devices for which heatsinks will be provided. The metal frame has multiple apertures that allow access to the tops of the data processing elements underneath. The metal frame serves as a containment vehicle for multiple heatsinks, and also provides rigidity to the printed circuit board in the particularly vulnerable vicinity of the comers where the devices are attached to the printed circuit board.