摘要:
The present invention provides improved electrochromic layers, which comprise polymeric matrices with electrochromic solutions interspersed therein. Varying an electrical potential difference across a layer of the invention results in reversible variation in the transmittance of light across the layer because of electrochemical processes in the electrochromic solution of the layer. The invention further provides electrochromic devices, in which the electrochromic layers of the invention provide reversibly variable transmittance to light, and various apparatus in which the devices of the invention provide light-filtering or light-color modulation. Such apparatus include windows, including those for use inside and on the outside walls of buildings and in sunroofs for automobiles, and variable reflectance mirrors, especially rearview mirrors for automobiles.
摘要:
The present invention provides improved electrochromic layers, which comprise polymeric matrices with electrochromic solutions interspersed therein. Varying an electrical potential difference across a layer of the invention results in reversible variation in the transmittance of light across the layer because of electrochemical processes in the electrochromic solution of the layer. The invention further provides electrochromic devices, in which the electrochromic layers of the invention provide reversibly variable transmittance to light, and various apparatus in which the devices of the invention provide light-filtering or light-color modulation. Such apparatus include windows, including those for use inside and on the outside walls of buildings and in sunroofs for automobiles, and variable reflectance mirrors, especially rearview mirrors for automobiles.
摘要:
The present invention provides improved electrochromic layers, which comprise polymeric matrices with electrochromic solutions interspersed therein. Varying an electrical potential difference across a layer of the invention results in reversible variation in the transmittance of light across the layer because of electrochemical processes in the electrochromic solution of the layer. The invention further provides electrochromic devices, in which the electrochromic layers of the invention provide reversibly variable transmittance to light, and various apparatus in which the devices of the invention provide light-filtering or light-color modulation. Such apparatus include windows, including those for use inside and on the outside walls of buildings and in sunroofs for automobiles, and variable reflectance mirrors, especially rearview mirrors for automobiles.
摘要:
An improved electrochromic device, the device incorporating an electrochromic medium that comprises at least three electroactive materials having absorption spectra that add together such that the color of the electrochromic medium can be pre-selected by individually choosing the concentrations of the at least three electroactive materials. The electrochromic medium generally maintains the pre-selected perceived color throughout its normal range of voltages when used in an electrochromic device. The at least three electroactive materials include at least one electrochemically reducible material (cathodic material), at least one electrochemically oxidizable material (anodic material) and at least one additional electroactive material which may be either an anodic or cathodic material. Thus, there are always three electroactive materials present in the medium, with at least two either being anodic or cathodic materials. The pre-selected color may be chosen from a wide variety of colors and may be, for example, red, orange, yellow, green, blue, purple. For electrochromic mirrors for motor vehicles, a presently preferred color is gray.
摘要:
Improved electro-optic devices are provided which may be in the configuration of variable transmittance windows, variable transmittance eyeglasses, variable transmittance light filters and displays and other devices wherein the transmittance of light therethrough automatically varies as a function of light impinging thereon. The electro-optic devices include a self-erasing electro-optic medium, and the transmittance of light through such medium varies as a function of electrical signals applied thereto through the agency of at least one photovoltaic cell, enclosed within the electro-optic device, and obviating the necessity of providing external drive voltage or external bleeder resistors or external wiring. In addition, a method and apparatus are provided for making such electro-optic devices.
摘要:
An electrochromic variable reflectance mirror for a vehicle includes a reflector/electrode on the third surface of the mirror. This reflector/electrode forms an integral electrode in contact with the electrochromic media, and may be a single layer of a highly reflective material or may comprise a series of coatings. When a series of coatings is used for the reflector/electrode, there should be a base coating which bonds to the glass surface and resists any adverse interaction, e.g., corrosive action, with the constituents comprising the electrochromic media, an optional intermediate layer (or layers) which bonds well to the base coating and resists any adverse interaction with the electrochromic media, and at least one highly reflective layer which directly contacts the electrochromic media and which is chosen primarily for its high reflectance, stable behavior as an electrode, resistance to adverse interaction with the materials of the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, the ability to adhere to the base or intermediate layer(s) (if present) and to the epoxy seal, and ease of cleaning. If a base layer is deposited it preferably covers the entire third surface; however, when this is done the highly reflective layer may optionally only coat the central portion of the third surface and not the perimeter edge portion. The third surface reflector/electrode provides of improved electrical interconnection techniques used to impart a voltage drive potential to a transparent conductor on the mirror's second surface.
摘要:
An electrochromic variable reflectance mirror for a vehicle includes a reflector/electrode on the third surface of the mirror. This reflector/electrode forms an integral electrode in contact with the electrochromic media, and may be a single layer of a highly reflective material or may comprise a series of coatings. When a series of coatings is used for the reflector/electrode, there should be a base coating which bonds to the glass surface and resists any adverse interaction, e.g., corrosive action, with the constituents comprising the electrochromic media, an optional intermediate layer (or layers) which bonds well to the base coating and resists any adverse interaction with the electrochromic media, and at least one highly reflective layer which directly contacts the electrochromic media and which is chosen primarily for its high reflectance, stable behavior as an electrode, resistance to adverse interaction with the materials of the electrochromic media, resistance to atmospheric corrosion, resistance to electrical contact corrosion, the ability to adhere to the base or intermediate layer(s) (if present) and to the epoxy seal, and ease of cleaning. If a base layer is deposited it preferably covers the entire third surface; however, when this is done the highly reflective layer may optionally only coat the central portion of the third surface and not the perimeter edge portion. The third surface reflector/electrode provides of improved electrical interconnection techniques used to impart a voltage drive potential to a transparent conductor on the mirror's second surface.
摘要:
Electro optic devices incorporating an improved configuration of elements which dramatically reduces light scattering and haziness with relatively inexpensive coated glass. The devices are liquid or gel containing electro optic devices, such as an electrochromic automatic rearview mirror for automotive vehicles, which has for at least one of its walls a sheet of glass coated with a transparent conductive coating. The combination of the coated glass, which has a tendency to have an optically rough surface, and the liquid or gel electro optic material reduces the scattering of any incident light by wetting out the rough optical surface of the coated glass, thereby improving the optical quality. The coated glass scatters between 0.2 and 4.0% of visible white light prior to assembly into the device.
摘要:
An electrochromic mirror is disclosed for use in a vehicle rearview mirror assembly having a light source positioned behind the electrochromic mirror for selectively projecting light through the mirror. The electrochromic mirror includes front and rear spaced elements each having front and rear surfaces and being sealably bonded together in a spaced-apart relationship to define a chamber, a layer of transparent conductive material disposed on the rear surface of the front element, at least one solution-phase electrochromic material contained within the chamber, and a second electrode overlying the front surface of the rear element in contact with the electrochromic material. The second electrode includes a layer of highly reflective material and a coating of electrically conductive material that is at least partially transmissive and is disposed over substantially all of the front surface of the rear element. The second electrode further includes a region in front of the light source that is at least partially transmissive. The electrically conductive coating may include a single transparent layer or a plurality of partially reflective and transmissive layers, or an electrically conductive dichroic coating. The light source may be an information display, such as a compass/temperature display as used in an inside rearview mirror, or may be a signal light as used in an outside rearview mirror.
摘要:
An improved electro-optic device for rearview mirror for motor vehicles and windows, the device incorporating a multi-layer transparent electrode having a first layer of tin-doped indium oxide and a second layer of fluorine-doped tin oxide. This multi-layer transparent conductive coating stack, which may also include additional coatings to provide color suppression, exhibits sheet resistances as low as about 10.OMEGA./.quadrature., while still being high in visible light transmission. This coating stack has surprising advantages for use in electro-optic devices. First, ITO base coat provides low sheet resistance and high light transmission, which is particularly valuable for large area electro-optic mirrors and windows, where resistance in the transparent coating limits speed and uniformity of coloration. Second, the FTO over-coat provides significant processing and environmental stability improvements as compared with ITO alone, and further allows the ITO/FTO stack to maintain low sheet resistance and high light transmission during and after the process steps used to make an electro-optic device.