摘要:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes a set of photovoltaic cells and a spectral concentrator optically coupled to the set of photovoltaic cells. The spectral concentrator is configured to: (1) collect incident solar radiation; (2) convert the incident solar radiation into substantially monochromatic, emitted radiation; and (3) convey the substantially monochromatic, emitted radiation to the set of photovoltaic cells.
摘要:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes an active layer including a set of photovoltaic cells. The solar module also includes a spectral concentrator optically coupled to the active layer and including a luminescent material that exhibits photoluminescence in response to incident solar radiation. The photoluminescence has: (a) a quantum efficiency of at least 30 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
摘要:
Described herein are optical devices including resonant cavity structures. In one embodiment, an optical fiber includes: (1) an elongated core including an outer surface; (2) an inner reflector disposed adjacent to the outer surface of the core and extending substantially along a length of the core; (3) an outer reflector spaced apart from the inner reflector and extending substantially along the length of the core; and (4) an emission layer disposed between the outer reflector and the inner reflector and extending substantially along the length of the core, the emission layer configured to emit radiation that is guided within the optical fiber.
摘要:
Described herein are solar modules and related manufacturing methods. In one embodiment, a solar module includes: (1) a photovoltaic cell; and (2) a resonant cavity waveguide having a non-planar configuration and optically coupled to the photovoltaic cell, the resonant cavity waveguide including: (a) an outer reflector; (b) an inner reflector; and (c) an emission layer disposed between the outer reflector and the inner reflector with respect to an anti-node position within the resonant cavity waveguide, the emission layer configured to absorb incident solar radiation and emit radiation that is guided towards the photovoltaic cell, the emitted radiation including an energy band having a peak emission wavelength that is substantially matched to a bandgap energy of the photovoltaic cell.
摘要:
Described herein are solar modules and related manufacturing methods. In one embodiment, a solar module includes: (1) a photovoltaic cell; and (2) a resonant cavity waveguide optically coupled to the photovoltaic cell, the resonant cavity waveguide including: (a) a top reflector; (b) a bottom reflector; and (c) an emission layer disposed between the top reflector and the bottom reflector with respect to an anti-node position within the resonant cavity waveguide, the emission layer configured to absorb incident solar radiation and emit radiation that is guided towards the photovoltaic cell, the emitted radiation including an energy band having a spectral width no greater than 80 nm at Full Width at Half Maximum.
摘要:
Described herein are solar modules including spectral concentrators. In one embodiment, a solar module includes an active layer including a set of photovoltaic cells. The solar module also includes a spectral concentrator optically coupled to the active layer and including a luminescent material that exhibits photoluminescence in response to incident solar radiation. The photoluminescence has: (a) a quantum efficiency of at least 30 percent; (b) a spectral width no greater than 100 nm at Full Width at Half Maximum; and (c) a peak emission wavelength in the near infrared range.
摘要:
The invention relates to an optical device. The optical device comprises a waveguide core and a nanocomposite material optically coupled to the waveguide core. The nanocomposite material includes a plurality of quantum dots. The nanocomposite material has a nonlinear index of refraction γ that is at least 10−9 cm2/W when irradiated with an activation light having a wavelength λ between approximately 3×10−5 cm and 2×10−4 cm.
摘要:
The invention relates to an optical device. The optical device comprises a waveguide core and a nanocomposite material optically coupled to the waveguide core. The nanocomposite material includes a plurality of quantum dots. The nanocomposite material has a nonlinear index of refraction &ggr; that is at least 10−9 cm2/W when irradiated with an activation light having a wavelength &lgr; between approximately 3×10−5 cm and 2×10−4 cm.