摘要:
The Fibre Channel Credit Extender (FCCE) (600) is a network device that is disposed between and connected to an end node (210) and an optical repeater (220). The FCCE (600) contains as many buffer credits as necessary, to solve bandwidth problems in a network. In a situation where maximum bandwidth is required in both directions of a link, the FCCE (600) breaks a single logical link into three physically separated “linklets.” The short-distance linklets attain maximum bandwidth by use of the existing buffer credits of the end nodes. The long-distance linklet attains maximum bandwidth by use of very high receive buffer credits in the FCCEs (600). In this way, only those links that need maximum bandwidth over distances not covered by end-node credit counts need be attached to an FCCE (600). The FCCE (600) contains the optical repeater to gain distance on that link, and contains high credit count receive buffers to gain bandwidth on the link. All other ports of the switch can have smaller and less expensive receive buffers.
摘要:
The Fibre Channel Credit Extender (FCCE) (600) is a network device that is disposed between and connected to an end node (210) and an optical repeater (220). The FCCE (600) contains as many buffer credits as necessary, to solve bandwidth problems in a network. In a situation where maximum bandwidth is required in both directions of a link, the FCCE (600) breaks a single logical link into three physically separated “linklets.” The short-distance linklets attain maximum bandwidth by use of the existing buffer credits of the end nodes. The long-distance linklet attains maximum bandwidth by use of very high receive buffer credits in the FCCEs (600). In this way, only those links that need maximum bandwidth over distances not covered by end-node credit counts need be attached to an FCCE (600). The FCCE (600) contains the optical repeater to gain distance on that link, and contains high credit count receive buffers to gain bandwidth on the link. All other ports of the switch can have smaller and less expensive receive buffers.
摘要:
The Fiber Channel Credit Extender (FCCE) (600) is a network device that is disposed between and connected to an end node (210) and an optical repeater (220). The FCCE (600) contains as many buffer credits as necessary, to solve bandwidth problems in a network. In a situation where maximum bandwidth is required in both directions of a link, the FCCE (600) breaks a single logical link into three physically separated “linklets.” The short-distance linklets attain maximum bandwidth by use of the existing buffer credits of the end nodes. The long-distance linklet attains maximum bandwidth by use of very high receive buffer credits in the FCCEs (600). In this way, only those links that need maximum bandwidth over distances not covered by end-node credit counts need be attached to an FCCE (600). The FCCE (600) contains the optical repeater to gain distance on that link, and contains high credit count receive buffers to gain bandwidth on the link. All other ports of the switch can have smaller and less expensive receive buffers.
摘要:
Hardware-enforced zoning is provided in Fiber Channel switches to protect against breaching of assigned zones in a switch network which can occur with software-based zoning techniques. The invention provides logic for performing a hardware-based validation of the Source ID S_ID of frames both at the point where the frame enters the Fiber Channel fabric, and at the point where the frame leaves the fabric. The S_ID is verified against an inclusion list or table of allowable S_IDs, which can be unique for each fabric port. The invention provides a way to increase the range of sources an inclusion table can express, by implementing wild cards, on an entry-by entry basis. If the S_ID is valid, it will enter the fabric and route normally. If invalid, the frame will not be routed but will be disposed of by the fabric according to FC rules. This prevents incorrect S_IDs from breaching the table-driven zoning at the point where frames exit the fabric, to prevent unauthorized access to devices connected to the switch network.
摘要:
Medical devices and methods for delivery or implantation of prostheses within hollow body organs and vessels or other luminal anatomy are disclosed. The subject technologies can be used in the treatment of atherosclerosis in stenting procedures or be used in variety of other procedures. The systems can employ a self expanding stent restrained by one or more members released by an electrolytically erodable latch.
摘要:
A method and apparatus are provided for measuring hemostasis. The apparatus includes a torque sensing column having a torque sensing element and a drive ring disposed around a body of the column and in registration with the column so as to allow rotation of the drive ring around a longitudinal axis of the column. The apparatus further includes a first guide shaft rigidly secured to the drive ring, the guide shaft extending parallel to the longitudinal axis of the column and a cup holder movably attached to the guide shaft, allowing the cup holder to move parallel to the longitudinal axis of the column. The apparatus also includes a sample cup adapted to engage the cup holder on a outer surface and the torque sensing element of the torque sensing column on an inner surface.
摘要:
A coin handling mechanism for conveying coins to a remotely positioned coin receptor which accumulates the deposited coins. There is a water trap positioned along a back wall of the housing for diverting the flow of liquid injected through the coin entrance slot downwardly along the back of the housing to a fluid collecting chamber. The water trap comprises intersecting vertical support members and horizontal cross bars. There is also provided a coin discharge chute having an adjustment mechanism to adjust the point of discharge of the coins.
摘要:
An engineered pumping segment for facilitating efficient and accurate peristaltic pumping of fluids, providing regulation of fluid flow and providing an effective interface for sensing fluid line pressure in a peristaltic pump system. The engineered pumping segment includes an elastomeric membrane sandwiched between a rigid base and a rigid cover and a slider adapted to slidably mount about the base and cover. The membrane and base define a channel for fluid flow and the membrane, base and cover cooperate to facilitate peristaltic pumping of fluids through the engineered pumping segment and to provide a pressure sensing interface, and in combination with the slider, cooperate to regulate fluid flow.
摘要:
The present disclosure comprises handle assemblies for intravascular treatment devices. In one embodiment, a handle assembly comprises an actuator for deflecting a distal region of an intravascular treatment device. In one embodiment, a handle assembly comprises a rotator for rotating an intravascular treatment device independently of the handle assembly. In one embodiment, a handle assembly comprises a rotation limiting element for limiting independent rotation of an intravascular treatment device relative to the handle assembly. Methods and systems for intravascular delivery, deflection and placement of an intravascular treatment device via a handle assembly of the present invention are also provided.
摘要:
Hardware-enforced zoning is provided in Fibre Channel switches to protect against breaching of assigned zones in a switch network which can occur with software-based zoning techniques. The invention provides logic for performing a hardware-based validation of the Source ID S_ID of frames both at the point where the frame enters the Fibre Channel fabric, and at the point where the frame leaves the fabric. The S_ID is verified against an inclusion list or table of allowable S_IDs, which can be unique for each fabric port. The invention provides a way to increase the range of sources an inclusion table can express, by implementing wild cards, on an entry-by entry basis. If the S_ID is valid, it will enter the fabric and route normally. If invalid, the frame will not be routed but will be disposed of by the fabric according to FC rules. This prevents incorrect S_IDs from breaching the table-driven zoning at the point where frames exit the fabric, to prevent unauthorized access to devices connected to the switch network.