摘要:
The invention relates to a floor covering (100) comprising: a plurality of coils (110), each coil (110) being operable to supply inductive energy to a power receiver circuit (200); wherein the plurality of coils comprises a transmitter area occupying the largest area of the floor covering (100); and a charging current through the coils is operable to generate said inductive energy.
摘要:
The present invention relates to a lighting system comprising a base part (12) with at least one primary coil (18), and at least one light module (13, 14) with a secondary coil (26) adapted to inductively interact with the primary coil (18). The lighting system is characterized in that said base part (12) comprises a substrate (50) carrying said primary coil (18), the winding of which lying in one plane and forming a flat coupling area (16); the winding of the second coil (26) lies in one plane; and said light module (13, 14) comprises at least one light element (20) and a flat bottom surface, so that the light module (13, 14) is placeable with its flat surface on the flat coupling area (16).
摘要:
The present invention relates to a lighting system comprising a base part (12) with at least one primary coil (18), and at least one light module (13, 14) with a secondary coil (26) adapted to inductively interact with the primary coil (18). The lighting system is characterized in that said base part (12) comprises a substrate (50) carrying said primary coil (18), the winding of which lying in one plane and forming a flat coupling area (16); the winding of the second coil (26) lies in one plane; and said light module (13, 14) comprises at least one light element (20) and a flat bottom surface, so that the light module (13, 14) is placeable with its flat surface on the flat coupling area (16).
摘要:
An electronic device (10,40) which is inductively powered or charged has a receiver coil (12) on which a metal object (24,42) can be placed without causing deterioration of the coil's magnetic field and without generating heat in the metal object. An ultra-thin, flexible, high magnetic permeability metal foil (14) having a thickness of 50 μm or less is provided as a shielding layer between the coil and the object. Radial slits (22) are provided in the shielding layer, which suppress unwanted eddy currents in the layer to reduce power transfer losses and heat generation.
摘要:
An article of manufacture for supplying a power to a load connected in a capacitive power transfer system comprises a sheet (210) of a non-conductive material; and a plurality of conductive stripes (220), each two adjacent conductive stripes being electrically insulated from each other, wherein the sheet forms an insulating layer of the capacitive power transfer system and the plurality of conductive stripes form at least a pair of transmitter electrodes of the capacitive power transfer system.
摘要:
An apparatus (300) for supplying power to a load in a capacitive power transfer system comprises a power generator (350) operating at a first frequency; a transmitter comprising a plurality of first electrodes (310) connected to a first terminal of the power generator (350) and a plurality of second electrodes (320) connected to a second terminal of the power generator (350) of a transmitter portion of the apparatus (300); and a plurality of inductors (340), wherein each inductor of the plurality of inductors is connected between a pair of a first electrode and a second electrode of the plurality of first and second electrodes, wherein each inductor comprises, together with a parasitic capacitor (330) formed between each pair of the first electrode and the second electrode, a resonant circuit at the first frequency in order to compensate for current loss due to parasitic capacitances.
摘要:
The invention relates to a planar receiver coil for use in a receiving device for receiving power from a transmitting device inductively, the receiver coil is intended to be coupled with a transmitter coil of said transmitting device, said receiver coil constituted by winding turns, wherein the winding turns at the outer part of the receiver coil are denser than the winding turns at the inner part of the receiver coil.
摘要:
The invention relates to a method and a device for grouping at least three lamps (1) and for assigning the lamps (1) to at least one operating unit. It is time-intensive to equip one or a plurality of rooms or halls within a building with lamps (1), particularly a grouping of lamps (1), and assigning lamps (1) to at least one operating unit. Therefore, grouping of lamps (1) and assigning the lamps (1) to at least one operating unit should be simplified. In accordance with the invention, a lamp (1) emits light and the other lamps (1) measure light, and distances between the lamps (1) are determined in dependence upon at least one light value and the lamps (1) are assigned to at least one operating unit in dependence upon the distances.
摘要:
Power converter for receiving an input current at an input voltage and for providing an output current at an output voltage. The power converter comprises a transformer (133) having a primary (136) and at least one secondary (138) side, wherein the transformer shows a mutual inductivity Ls. The power converter further comprises at least one switching device (124a, 124b) being operated at an operating frequency fop at the primary side of said transformer, and a capacitor CS at the primary side of the transformer. The capacitor forms a resonant circuit with the leakage inductivity LS of said transformer, wherein said operating frequency, said capacitor Cs, said mutual inductivity Lm and said leakage inductivity LS are matched such that the effective value of the output current is substantially constant with respect to variations of a load being traversed by said output current by using resonance principles and operating the power converter in a current source mode.
摘要:
The invention relates to a driver circuit arrangement (1′) for driving a plurality of individually switchable electrical subsystems (A′, B′, C′), such as (arrangements of) LEDs (9-A, 9-B, 9-C). Each subsystem has at least one energy storage device (10-A, 10-B, 10-C), such that when the subsystem is disconnected from the main source (7) of electrical energy, the energy storage device can supply energy to the device(s) of the subsystem. By furthermore providing at least one subswitch (13-A, 13-B, 13-C) in the subsystem, between the energy storage device and an electrical device of the subsystem, control over the device is still possible when the subsystem is disconnected form the main source of electrical energy.