Abstract:
A method and system for establishing secure communication between a MFD (Multi-Function Device) and a mobile communications device. A virtual private network (VPN) connection can be established between the mobile communications device and the MFD via a rendezvous server utilizing a random displayed code on a user interface of the MFD. An application with respect to the mobile communications device can be started by the user to connect to the MFD and the displayed code can be read by the mobile communications device utilizing an image capturing unit associated with the mobile communications device. The connection key presented by the mobile application can be validated by the rendezvous server. The rendezvous server can be polled for an incoming traffic and the traffic can be forwarded to a service hosted by the MFD utilizing an application running on the MFD.
Abstract:
According to embodiments illustrated herein there is provided a method for controlling an electronic device. The method includes detecting, in a mobile device, a contact with the electronic device at a predetermined reference location on the electronic device. The method further includes tracking a movement of the mobile device from the predetermined reference location to a second location on the electronic device, wherein the second location corresponds to a first component of the electronic device. Additionally, the method includes receiving an input from a user to control one or more functionalities of the first component.
Abstract:
Methods and systems for transparently extending a multi-function device onto a mobile communications device. The mobile communications device and the multi-function device can be securely connected utilizing a random code displayed on a user interface of the MFD. An extensibility application associated with the MFD can be transparently combined with an execution environment of the mobile communications device to offer a number of services. A hardware and software resource of the MFD and the mobile communications device can be combined to perform composite operations involving data from both devices. The connection can expire after a period of inactivity and require physical proximity to be established to prevent unwanted access to the MFD. Such an approach establishes a shared extensibility framework for the multifunction device and the mobile communications device as a single execution environment.
Abstract:
A method and system for pairing devices comprises transmitting a plurality of communication signals from each of a plurality of devices and setting an initial threshold vector of signal strengths as a current threshold vector of signal strengths for at least one target device selected from among the plurality of devices. The embodiment includes pairing at least one client device with the at least one target device when a measured vector of signal strengths exceeds the current threshold vector of signal strengths and adjusting the current threshold vector of signal strengths according to the pairing between the client device and the target device, thereby adaptively adjusting the current threshold vector of signal strengths.
Abstract:
A system and method for verifying proximity to a computational tag by receiving a first token from a server and transmitting the first token to the computational tag. The computational tag can verify the first token and generate a second token based on the first token where the second token includes a signature of the computational tag. The computational tag can transmit the second token to the mobile device and the mobile device can transmit the second token to the server. The server can verify the second token and allow access to a messaging service based on the verification of the second token.
Abstract:
Methods and systems receive location identification tokens from transmitters using a portable computerized device. A first location identification token is received from a first location transmitting device, while the portable computerized device is within a predetermined distance from a designated location. A second location identification token is received from a second location transmitting device. A current location signature is calculated using the first and second location identification tokens. A previously stored location signature associated with the first and second location identification tokens is obtained from a computer readable storage medium. The current location signature is compared with the previously stored location signature to determine a similarity measure. The location identification tokens and the current location signature are stored in a memory and transmitted to a server. The presence of the portable computerized device at the designated location is verified based on the location identification tokens and the current location signature.
Abstract:
A method and system for pairing devices comprises transmitting a plurality of communication signals from each of a plurality of devices and setting an initial threshold vector of signal strengths as a current threshold vector of signal strengths for at least one target device selected from among the plurality of devices. The embodiment includes pairing at least one client device with the at least one target device when a measured vector of signal strengths exceeds the current threshold vector of signal strengths and adjusting the current threshold vector of signal strengths according to the pairing between the client device and the target device, thereby adaptively adjusting the current threshold vector of signal strengths.
Abstract:
A system and method are provided for implementing a streamlined scheme for transferring print jobs directly from the print queue of one image forming device to the print queue of another image forming device using mobile devices and tags, such as near field communication (NFC) tags, affixed to image forming devices. A user manipulated mobile device is employed to read a readable tag affixed to or nearby a particular image forming device as a source device in which a print job is stuck, the mobile device running a print-job transfer application. The user then walks up to a different (or destination) image forming device and “touch” its tag, and confirm, for example, when prompted, to transfer the “stuck” print job from the source to the destination image forming system or device.
Abstract:
Methods and systems for transparently extending a multi-function device onto a mobile communications device. The mobile communications device and the multi-function device can be securely connected utilizing a random code displayed on a user interface of the MFD. An extensibility application associated with the MFD can be transparently combined with an execution environment of the mobile communications device to offer a number of services. A hardware and software resource of the MFD and the mobile communications device can be combined to perform composite operations involving data from both devices. The connection can expire after a period of inactivity and require physical proximity to be established to prevent unwanted access to the MFD. Such an approach establishes a shared extensibility framework for the multifunction device and the mobile communications device as a single execution environment.
Abstract:
Methods and systems for merging and including an additional electronic document in a scan job. The scan job can be initiated and controlled by an application module running on a mobile communications device and the scan job can be stored in a buffer associated with a MFD scanner. A scan option to merge the scan job with the additional electronic document can be selected via the mobile communications device. The additional electronic document can be decomposed into pages by an interpreter and stored in the buffer. The scan job and the decomposed electronic document stored in the buffer can be delivered to a marshaling service running on a network. The additional electronic document can be added to the scan job based on an order of merging in order to generate a combined electronic document by an electronic document builder configured with the marshaling service.