Abstract:
A three-dimensional object printer comprises a platen, a gantry positioned above the platen, an ejector head positioned on the gantry, a sensor, and a controller. The controller is configured to operate the ejector to eject at least one drop of material toward the platen at an upper build level and determine process and cross-process differentials between a fiducial and the at least one drop of material deposited on the upper build surface. The controller is also configured to determine an ejector head shift in a process direction and a cross-process direction associated with each of the plurality of build levels based at least in part on the determined process and cross-process differentials and a number of build levels between the base build level and the upper build level.
Abstract:
An apparatus detects inoperative inkjets during printing of three-dimensional objects. The apparatus includes a reversible thermal substrate that changes optical density in areas where material drops are ejected onto the substrate. An optical sensor generates image data of the substrate after material drops are ejected onto the substrate and these image data are analyzed to identify inoperative inkjets.
Abstract:
An apparatus detects inoperative inkjets during printing of three-dimensional objects. The apparatus includes a reversible thermal substrate that changes optical density in areas where material drops are ejected onto the substrate. An optical sensor generates image data of the substrate after material drops are ejected onto the substrate and these image data are analyzed to identify inoperative inkjets.
Abstract:
A printer detects inoperative inkjets during printing of three-dimensional objects. The printer includes an area where a printhead ejects material in a predetermined pattern and a profilometer is operated to measure the ejected material in the area. The measurements are used to identify inoperative inkjets or inkjets that operate errantly.
Abstract:
An apparatus detects inoperative inkjets during printing of three-dimensional objects. The apparatus includes a reversible thermal substrate that changes optical density in areas where material drops are ejected onto the substrate. An optical sensor generates image data of the substrate after material drops are ejected onto the substrate and these image data are analyzed to identify inoperative inkjets.
Abstract:
A three-dimensional object printer comprises a platen, a gantry positioned above the platen, an ejector head positioned on the gantry, a sensor, and a controller. The controller is configured to operate the ejector to eject at least one drop of material toward the platen at an upper build level and determine process and cross-process differentials between a fiducial and the at least one drop of material deposited on the upper build surface. The controller is also configured to determine an ejector head shift in a process direction and a cross-process direction associated with each of the plurality of build levels based at least in part on the determined process and cross-process differentials and a number of build levels between the base build level and the upper build level.
Abstract:
A three-dimensional (3D) metal object manufacturing apparatus operates an ejector in an ejection mode to form exterior portions of an object and in an extrusion mode to form interior portions within a perimeter of an object layer. In the extrusion mode, the ejector continuously extrudes melted metal to fill the interior portions quickly.
Abstract:
An apparatus detects inoperative inkjets during printing of three-dimensional objects. The apparatus includes a reversible thermal substrate that changes optical density in areas where material drops are ejected onto the substrate. An optical sensor generates image data of the substrate after material drops are ejected onto the substrate and these image data are analyzed to identify inoperative inkjets.
Abstract:
An inkjet printer is configured to purge printheads in the printer and clean the purged ink from the printheads. The inkjet printer includes a purge tray configured with a wiper to remove a substantial portion of the purged ink from the faces of the printheads without contacting the printheads. A wiper module rotates wipers through a reservoir of cleaning fluid prior to contacting the printheads to facilitate removal of the remaining purged ink from the printheads as the printheads move past the wiper module to return to a printing position.
Abstract:
Devices include an inkjet printhead having nozzles and a transport item adjacent the nozzles. The transport item includes vacuum openings adapted to maintain print media on the transport item. The transport item moves the print media in a processing direction. The transport item also includes a jetting area lacking the vacuum openings. The jetting area is elongated and is oriented perpendicular to the processing direction. The nozzles are controlled to eject ink to the jetting area when the nozzles are aligned with the jetting area.