摘要:
A process for forming polymer particles with aligned pores and controlled narrow particle size distribution, including: a) forming an oil phase by dissolving a polymeric binder in a solvent; b) dispersing the oil phase into a water phase containing a controlled amount of particulate stabilizer and forming an oil-in-water emulsion of controlled narrow dispersed oil phase droplet size distribution; c) freezing the emulsion to freeze solvent in the oil droplets to form frozen solvent domains within the polymeric binder, and also the water in the continuous water phase; and d) removing the frozen solvent from the polymeric binder and the frozen water in the continuous water phase, thereby forming porous polymer particles of controlled narrow particle size distribution and containing directional aligned non-spherical pore structures. Optionally, the porous particles may contain encapsulated functional ingredients.
摘要:
A method of manufacturing porous polymer particles with improved filterability is described. One or more first water phases are formed comprising an anionic hydrocolloid with a mass-per-charge value of less than 600 and a relatively minor amount, compared to the anionic hydrocolloid, of at least one of a nonionic, cationic, zwitterionic, or weakly anionic water soluble or dispersible polymer, where the weakly anionic water soluble or dispersible polymer has a mass-per-charge value of larger than 600. A water-in-oil emulsion is formed by dispersing the one or more first water phases into an organic phase comprising at least one of either (i) preformed polymer dissolved in an organic solvent or (ii) polymerizable monomers, and homogenizing. A water-in-oil-in-water multiple emulsion is formed by dispersing the water-in-oil emulsion into a second water phase containing a stabilizing agent and homogenizing. The organic solvent is removed to precipitate the preformed polymer, or the polymerizable monomers are polymerized, to obtain a dispersion of porous polymer particles in an external aqueous phase, wherein individual porous particles each comprise a continuous polymer phase and internal pores containing an internal aqueous phase. The dispersion of porous polymer particles is filtered to remove the external aqueous phase. The method enables increased filtration rates of porous polymer particle dispersions containing water in the pores.
摘要:
The present invention is directed towards methods of manufacturing wax-containing polymer particles by limited coalescence processes employing aqueous wax dispersions. In one embodiment, an aqueous wax dispersion or emulsion is dispersed in an oil phase comprising a water-immiscible solvent and a polymer to form a transient water-in-oil (W/O) emulsion, and a further aqueous phase containing a particulate stabilizer is then added to the W/O emulsion to induce phase inversion, and the mixture homogenized to form an oil-in-water (O/W) emulsion. The solvent is then removed from the emulsion to form particles containing wax domains inside. In another embodiment, the aqueous wax dispersion is first mixed with the aqueous phase containing the particulate stabilizer, and homogenization is made with the oil phase to form an O/W emulsion, from which wax-containing particles are obtained after solvent removal. In still further embodiments, the aqueous wax dispersion is used in the second water phase of a double emulsion (W1/O/W2) process to form porous polymer particles containing the wax.
摘要:
The present invention is a method for the preparation of porous particles that includes dissolving a polymer material in a first organic solvent and adding a second organic solvent and nonionic organic polymer particles to form an organic phase. The organic phase is dispersed in an aqueous phase that includes a particulate stabilizer to form a dispersion and the dispersion is homogenized. The first and second organic solvents are evaporated and the product is recovered.
摘要:
This invention relates to an imaging element comprising an imaging layer having associated therewith a compound of Structure I: In the above Structure I, the substituents are as defined in the application. Such compounds have good reactivity and can by used to block photographically useful compounds such as developing agents until thermally activated under preselected conditions. Compounds according to the present invention are especially useful in color photothermographic imaging elements.
摘要:
This invention relates to an imaging element comprising an imaging layer having associated therewith a compound of Structure I: wherein: the substituents are as defined in the application.
摘要:
A method of processing an imagewise exposed color photographic film, said film having at least three light-sensitive units which have their individual sensitivities in different wavelength regions, each of the units comprising at least one light sensitive silver halide emulsion and image dye coupler, which method comprises contacting the imagewise exposed color photographic film with an aqueous solution containing a non-blocked developing agent, at a temperature of between 30 to 60° C.; and wherein said film further comprises an incorporated reducing agent, at least one organic silver salt and an amido compound wherein the reducing agent is substantially unreactive in the aqueous color development step described above, but wherein color development of the same imagewise exposed film is capable of being alternatively obtained, without any externally applied developing agent, by heating said film to a temperature above about 80° C. essentially in the absence of aqueous solutions, such that the incorporated reducing agent reacts to form dye by reacting with the image dye couplers; with the proviso that the amido compound effectively reduces contrast when the film is heated above 80° C. but does not substantially reduce contrast when the film is processed by contacting the imagewise exposed color photographic film with a non-blocked developing agent under aqueous conditions, at a temperature of between 30 to 60° C.
摘要:
This invention relates to an imaging element comprising an imaging layer having associated therewith a compound of Structure I: In the above Structure I, the substituents are as defined in the application. Such compounds have good reactivity and can by used to block photographically useful compounds such as developing agents until thermally activated under preselected conditions. Compounds according to the present invention are especially useful in color photothermographic imaging elements.
摘要:
A method of manufacturing a double emulsion with narrow dispersed phase particle size distribution comprising: providing an organic phase comprising solid hydrocolloid particles dispersed in an organic solvent; and dispersing the organic phase in an aqueous phase in the presence of a controlled amount of stabilizing agent to form an emulsion of droplets of the organic phase dispersed in the external aqueous phase, wherein the hydrocolloid particles in the organic phase droplets are swelled with water from the external aqueous phase to form internal droplets of an aqueous phase in the organic phase droplets, thereby forming a double emulsion comprising droplets of the organic phase of controlled narrow particle size distribution in the external aqueous phase, where the organic phase droplets contain internal droplets of an aqueous phase. A method for producing porous polymeric particles by such a double emulsion method, wherein the organic phase further comprises a polymer resin, and wherein the organic solvent is removed from the dispersed organic phase droplets to form porous toner particles.
摘要:
The present invention is a method for the preparation of electrostatographic toner including the following steps. A polymer material is dissolved in an organic solvent to form an organic phase. The organic phase is dispersed in an aqueous phase that includes a particulate stabilizer and a salt including an anion selected from chloride, oxychloride, sulfate, perchlorate, nitrate, dihydrogen phosphate, lactate, trifluoromethylsulfonate, and trifluromethylhydrate and a cation selected from aluminum, iron (III), tin (II) and zirconium (IV), to form a dispersion. The dispersion is homogenized. The organic solvent is evaporated from the dispersion and the resultant product is recovered, washed and dried. In an alternate method the salt is added directly to the dispersion.