摘要:
A resistivity stable aqueous dispersion and a method for making an aqueous dispersion. The dispersion including polythienothiophene and at least one colloid-forming polymeric acid having a pH of from about 3 to about 10. The method includes preparing an aqueous dispersion containing polythienothiophene and adjusting the pH of the dispersion to a sufficiently high pH to provide resistivity stability. Devices utilizing layers formed of pH adjusted polythienothiophene are also disclosed.
摘要:
A resistivity stable aqueous dispersion and a method for making an aqueous dispersion. The dispersion including polythienothiophene and at least one colloid-forming polymeric acid having a pH of from about 3 to about 10. The method includes preparing an aqueous dispersion containing polythienothiophene and adjusting the pH of the dispersion to a sufficiently high pH to provide resistivity stability. Devices utilizing layers formed of pH adjusted polythienothiophene are also disclosed.
摘要:
A dispersion, and a film and optoelectronic devices formed from the dispersion are provided. The dispersion comprising conducting polymer containing particles having a particle size of less than 450 nm, wherein the conducting polymer comprises substituted or unsubstituted, uncharged or charged polymerized units of thieno[3,4-b]thiophene, and wherein a film drop cast from the dispersion has a conductivity from 10−1 to 10−6 S/cm measured using the four point probe method.
摘要翻译:提供了由分散体形成的分散体,膜和光电器件。 所述分散体包含含有粒径小于450nm的粒子的导电聚合物,其中所述导电聚合物包含噻吩并[3,4-b]噻吩的取代或未取代的不带电或带电的聚合单元,并且其中从 使用四点探针法测量的分散体具有从10psi至10 -6 -6 / cm 3的电导率。
摘要:
The light-emitting device comprising an anode, a cathode, a semi-conducting layer between the anode and the cathode and a hole injection layer comprising a conducting polymer between the anode and the semi-conducting layer; where an interfacial bonding layer is formed in-situ between the hole injection layer and the semi-conducting is disclosed.
摘要:
A light emitting device includes: (a) a light emitting layer including an electroluminescent organic material dispersed in a matrix, wherein the matrix contains a non-electroluminescent organic polymer having a Tg of at least 170° C., and each of the organic polymer and the electroluminescent organic material constitutes at least 20 percent by weight of the light emitting layer; and (b) electrodes in electrical communication with the light emitting layer and configured to conduct an electric charge through the light emitting layer such that the light emitting layer emits light. A method for manufacturing a flexible organic light emitting device, includes providing the light emitting layer and providing electrodes above and below the light emitting layer, wherein the electrodes are in electrical communication with the light emitting layer.
摘要:
Compositions are provided comprising aqueous dispersions of polythienothiophenes and colloid-forming polymeric acids. Films from invention compositions are useful as hole injection layers in organic electronic devices, including electroluminescent devices, such as, for example, organic light emitting diodes (OLED) displays, as hole extraction layers in organic optoelectronic devices, such as organic photovoltaic devices, and in combination with metal nanowires or carbon nanotubes in applications such as drain, source, or gate electrodes in thin film field effect transistor.
摘要:
Compositions are provided comprising aqueous dispersions of polythienothiophenes and colloid-forming polymeric acids. Films from invention compositions are useful as hole injection layers in organic electronic devices, including electroluminescent devices, such as, for example, organic light emitting diodes (OLED) displays, as hole extraction layers in organic optoelectronic devices, such as organic photovoltaic devices, and in combination with metal nanowires or carbon nanotubes in applications such as drain, source, or gate electrodes in thin film field effect transistors.
摘要:
A photovoltaic device having an anode, a cathode, and at least one photoactive layer between the anode and the cathode, wherein the at least one photoactive layer includes a composition containing a polymer having a glass transition temperature of at least 125° C.; and a photoactive material, wherein: (a) the photoactive material is a hole transporting organic material, an electron transporting organic material, and/or a light harvesting organic material, (b) the polymer and the photoactive material are in a single phase (c) the photoactive material constitutes at least 20% by weight of the composition, and (d) the at least one photoactive layer is in electrical communication with the anode and the cathode, the anode and the cathode are configured to conduct an electric charge from the at least one photoactive layer produced by the at least one photoactive layer absorbing light.
摘要:
An aqueous blend comprising water, a first conjugated polymer having a conductivity of greater than 10−7 S/cm and a second conjugated polymer having a conductivity greater than 10−7 S/cm wherein the conductivities of the first conjugated polymer and the second conjugated polymer are measured using a four point probe method prior to preparing the aqueous blend. A film is also presented comprising a first conjugated polymer having a conductivity of greater than 10−7 S/cm and a second conjugated polymer having a conductivity greater than 10−7 S/cm formed by (a) depositing the recited aqueous blend onto an article and (b) removing the water-containing solution to form the film on the article.
摘要:
A photovoltaic device having an anode, a cathode, and at least one photoactive layer between the anode and the cathode, wherein the at least one photoactive layer includes a composition containing a polymer having a glass transition temperature of at least 125° C.; and a photoactive material, wherein: (a) the photoactive material is a hole transporting organic material, an electron transporting organic material, and/or a light harvesting organic material, (b) the polymer and the photoactive material are in a single phase (c) the photoactive material constitutes at least 20% by weight of the composition, and (d) the at least one photoactive layer is in electrical communication with the anode and the cathode, the anode and the cathode are configured to conduct an electric charge from the at least one photoactive layer produced by the at least one photoactive layer absorbing light.