Abstract:
A method performed by a wireless node includes receiving a data flow associated with user devices; performing a packet inspection of the data flow; determining whether a network address of the wireless node matches another network address associated with the data flow; converting the other network address to a layer 2 identifier when the other network address matches the network address; establishing a bearer link within the wireless node based on the layer 2 identifier; and offloading the data flow from layers of a network, which are higher relative to the wireless node, to the bearer link, wherein the data flow does not traverse the layers.
Abstract:
A method performed by a wireless node including receiving charging policies for data offloading; performing data offloading with respect to a user data flow; generating charging information associated with data offloading based on the charging policies; and sending the charging information to at least one of an on-line charging function or an off-line charging function.
Abstract:
A method performed by a wireless node includes receiving policies for data offloading; identifying a user associated with a data flow to which a user device is attached; determining whether data offloading is permitted for the user based on the policies; and performing data offloading when it is determined that data offloading is permitted for the user, wherein data offloading includes routing the data flow away from at least one of a higher layer traffic aggregation device relative to the wireless node or a higher hierarchical controlling device relative to the wireless node.
Abstract:
A method performed by a wireless node including receiving charging policies for data offloading; performing data offloading with respect to a user data flow; generating charging information associated with data offloading based on the charging policies; and sending the charging information to at least one of an on-line charging function or an off-line charging function.
Abstract:
A method performed by a wireless node includes receiving a data flow associated with user devices; performing a packet inspection of the data flow; determining whether a network address of the wireless node matches another network address associated with the data flow; converting the other network address to a layer 2 identifier when the other network address matches the network address; establishing a bearer link within the wireless node based on the layer 2 identifier; and offloading the data flow from layers of a network, which are higher relative to the wireless node, to the bearer link, wherein the data flow does not traverse the layers.
Abstract:
A method performed by a wireless node includes receiving policies for data offloading; identifying a user associated with a data flow to which a user device is attached; determining whether data offloading is permitted for the user based on the policies; and performing data offloading when it is determined that data offloading is permitted for the user, wherein data offloading includes routing the data flow away from at least one of a higher layer traffic aggregation device relative to the wireless node or a higher hierarchical controlling device relative to the wireless node.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
Electronic device assemblies and methods including an organic substrate based space transformer are described. One assembly includes a space transformer comprising an organic substrate. The assembly also includes a carrier on which the space transformer is positioned, and a clamp positioned to couple the space transformer to the carrier. The assembly also includes a probe array positioned on the space transformer, wherein the space transformer is positioned between the probe array and the carrier. The assembly also includes a printed circuit board, wherein the carrier is positioned between the printed circuit board and the space transformer. The assembly also includes electrical connections to electrically couple the space transformer to the printed circuit board. Other embodiments are described and claimed.
Abstract:
A generator includes a first member, a second member and a sliding mechanism. The first member includes a first electrode and a first dielectric layer affixed to the first electrode. The first dielectric layer includes a first material that has a first rating on a triboelectric series. The second member includes a second material that has a second rating on the triboelectric series that is different from the first rating. The second member includes a second electrode. The second member is disposed adjacent to the first dielectric layer so that the first dielectric layer is disposed between the first electrode and the second electrode. The sliding mechanism is configured to cause relative movement between the first member and the second member, thereby generating an electric potential imbalance between the first electrode and the second electrode.
Abstract:
The present invention discloses a transmission method and system for a Relay Physical Downlink Control Channel (R-PDCCH). The method comprises the steps of: an eNB bearing downlink grant information of a relay node onto an available Orthogonal Frequency Division Multiplex (OFDM) symbol of a first slot of a pre-allocated Physical Resource Block (PRB) pair used for bearing the R-PDCCH, wherein available OFDM symbols in the PRB pair, other than the OFDM symbol used for the downlink grant information, are used for bearing a Physical Downlink Shared Channel (PDSCH) of each relay node; the eNB transmitting the PRB pair bearing the downlink grant information and the PDSCH to the relay node. The present invention is well applicable to a link between an eNB and a relay node, and meanwhile enables backhaul resources to be used adequately.