摘要:
Certain embodiments of the present invention provide a battery heating circuit, comprising a plurality of switch units (1), a switching control module (100), a damping component R1, an energy storage circuit, and a polarity inversion unit (101), wherein: the energy storage circuit is connected with the battery, and comprises a current storage component L1 and a plurality of charge storage components C1; the plurality of charge storage components C1 are connected with the plurality of switch units (1) in series in one-to-one correspondence to form a plurality of branches; the plurality of branches are connected in parallel with each other and then connected with the current storage component L1 and damping component R1 in series; the switching control module (100) is connected with the switch units (1), and is configured to control ON/OFF of the switch units (1), so that the energy flows back-and-forth between the battery and the energy storage circuit when the switch units (1) switch on; the polarity inversion unit (101) is connected with the energy storage circuit, and is configured to invert the voltage polarity of the plurality of charge storage components C1 after the switch units (1) switch from ON state to OFF state. For example, the heating circuit provided in certain embodiments of the present invention can improve charge/discharge performance of the battery, as well as safety and work efficiency in the battery heating process.
摘要:
A circuit for heating a battery includes a switch unit, control module, damping component, energy storage circuit, and superposition unit. The energy storage circuit forms a loop with the battery, and includes current and charge storage components. The damping component, switch unit, current storage component, and charge storage component connect in series. The control module switches on the switch unit so current flows between the battery and energy storage circuit and switches off the switch unit to stop current flow. The superposition unit superposes energy in the energy storage circuit with energy in the battery after the switch unit switches on and off. The control module switches the switch unit off after the first positive half cycle of current flow through the switch unit after the switch unit switches on. Voltage applied to the switch unit when the switch unit switches off is lower than the switch unit's voltage rating.
摘要:
Certain embodiments of the present invention provide a battery heating circuit, comprising a switch unit (1), a switching control module (100), a damping component R1, an energy storage circuit, a freewheeling circuit (20), and an energy superposition unit, the energy storage circuit is configured to connect with the battery to form a loop, and comprises a current storage component L1 and a charge storage component C1; the damping component R1, the switch unit (1), the current storage component L1, and the charge storage component C1 are connected in series; the switching control module (100) is connected with the switch unit (1), and is configured to control ON/OFF of the switch unit (1), so as to control the energy flowing between the battery and the energy storage circuit; the energy superposition unit is connected with the energy storage circuit, and is configured to superpose the energy in the energy storage circuit with the energy in the battery when the switch unit (1) switches on and then switches off; the freewheeling circuit (20) is configured to form a serial loop with the battery and the current storage component L1 to sustain current flow in the battery after the switch unit (1) switches on and then switches off.
摘要:
Certain embodiments of the present invention provide a battery heating circuit, comprising a plurality of switch units 1, a switching control module 100, a damping component R1, an energy storage circuit, and a polarity inversion unit 101, wherein: the energy storage circuit is connected with the battery, and comprises a current storage component L1 and a plurality of charge storage components C1; the plurality of charge storage components C1 are connected with the plurality of switch units 1 in series in one-to-one correspondence to form a plurality of branches; the plurality of branches is connected in parallel with each other and then connected with the current storage component L1 and damping component R1 in series; the switching control module 100 is connected with the switch units 1, and is configured to control ON/OFF of the switch units 1.
摘要:
A circuit for heating a battery includes a switch unit, control module, damping component, energy storage circuit, and superposition unit. The energy storage circuit forms a loop with the battery, and includes current and charge storage components. The damping component, switch unit, current storage component, and charge storage component connect in series. The control module switches on the switch unit so current flows between the battery and energy storage circuit and switches off the switch unit to stop current flow. The superposition unit superposes energy in the energy storage circuit with energy in the battery after the switch unit switches on and off. The control module switches the switch unit off after the first positive half cycle of current flow through the switch unit after the switch unit switches on. Voltage applied to the switch unit when the switch unit switches off is lower than the switch unit's voltage rating.
摘要:
Certain embodiments of the present invention provide a battery heating circuit, comprising a switch unit (1), a switching control module (100), a damping component R1, an energy storage circuit, and an energy superposition unit, the energy storage circuit is configured to connect with the battery to form a loop, and comprises a current storage component L1 and a charge storage component C1; the damping component R1, the switch unit (1), the current storage component L1, and the charge storage component C1 are connected in series; the switching control module (100) is connected with the switch unit (1), and is configured to control ON/OFF of the switch unit (1), so as to control the energy flowing between the battery and the energy storage circuit; the energy superposition unit is connected with the energy storage circuit, and is configured to superpose the energy in the energy storage circuit with the energy in the battery when the switch unit (1) switches on and then switches off; the switching control module (100) is also configured to control the switch unit (1) to switch off after the first positive half cycle of current flow through the switch unit (1) after the switch unit (1) switches on, and the voltage applied to the switch unit (1) at the time the switch unit (1) switches off is lower than the voltage rating of the switch unit (1).
摘要:
According to certain embodiments, a battery heating circuit is provided, comprising a first switch unit (11), a second switch unit (12), a third switch unit (13), a fourth switch unit (14), a switching control module (100), a damping component R1, a current storage component L1, and a charge storage component C1; the damping component R1 and current storage component L1 are configured to connect with the battery in series to form a branch; the first switch unit (11) and second switch unit (12) are connected in series with each other and then connected in parallel with the branch; the third switch unit (13) and fourth switch unit (14) are connected in series with each other and then connected in parallel with the branch; the charge storage component C1 is connected in series between the junction point of the first switch unit (11) and second switch unit (11) and the junction point of the third switch unit (13) and fourth switch unit (14), so that the first switch unit (11), charge storage component C1, and third switch unit (13) form a first branch configured to transfer energy from the battery to the charge storage component C1 and a second branch configured to transfer energy from the charge storage component C1 to the battery, and the fourth switch unit (14), charge storage component C1, and second switch unit (12) form a third branch configured to transfer energy from the battery to the charge storage component C1 and a fourth branch configured to transfer energy from the charge storage component C1 to the battery; the switching control module (100) is connected with the first switch unit (11), second switch unit (12), third switch unit (13), and fourth switch unit (14) respectively, and is configured to control ON/OFF of the first switch unit (11), second switch unit (12), third switch unit (13), and fourth switch unit (14), so as to control the energy flow between the battery and the charge storage component C1.
摘要:
Under one aspect, a heating circuit for a battery includes a plurality of switch units, a switching control module, a damping component, an energy storage circuit, and a polarity inversion unit. The energy storage circuit is connected with the battery, and includes a current storage component and a plurality of charge storage components that respectively are connected with the plurality of switch units in series to form a plurality of branches that are connected in parallel with each other and in series with the current storage and damping components. The switching control module controls switching on and off of the switch units, so that energy flows back-and-forth between the battery and the energy storage circuit when the switch units switch on. The polarity inversion unit is connected with the energy storage circuit inverts a voltage polarity of the plurality of charge storage components after the switch units switch off.
摘要:
Circuit and method for heating a battery. The circuit includes the battery with damping component, a switch unit, a switching control module, an energy storage circuit, a freewheeling circuit, and an energy superposition unit. The energy storage circuit connects with the battery to form a loop, and includes current and charge storage components. The damping component, switch unit, current storage component, and charge storage component connect in series. The switching control module turns on the switch unit such that current flows between the battery and energy storage circuit. The energy superposition unit superposes the energy in the energy storage circuit with the energy in the battery after the switch unit switches on and then off. The freewheeling circuit forms a serial loop with the battery and the current storage component to sustain current flow in the battery after the switch unit switches on and then off.
摘要:
According to certain embodiments, a battery heating circuit is provided, comprising a first switch unit 11, a second switch unit 12, a third switch unit 13, a fourth switch unit 14, a switching control module 100, a damping component R1, a current storage component L1, and a charge storage component C1; the damping component R1 and the current storage component L1 are configured to connect with the battery in series to form a branch; the first switch unit 11 and the second switch unit 12 are connected in series with each other and then connected in parallel with the branch; the third switch unit 13 and the fourth switch unit 14 are connected in series with each other and then connected in parallel with the branch.