摘要:
An apparatus for equalizing channels is provided, which is generally transparent to link training. The apparatus generally includes equalization paths formed by an input circuit, a crossbar, and an output circuit and a controller. Each equalization path is coupled to at least one of the channels, and a controller has a VGA loop, a crossbar loop, and a driver loop. The AGC loop receives a first reference voltage and provides a gain control signal to the input circuit, and the gain control network comprises a replica of at least one of the equalization paths. The crossbar loop receives a second reference voltage and provides a crossbar control signal to the crossbar. The driver loop receives a third reference voltage and provides a driver control signal for the output circuit.
摘要:
An apparatus for equalizing channels is provided, which is generally transparent to link training. The apparatus generally includes equalization paths formed by an input circuit, a crossbar, and an output circuit and a controller. Each equalization path is coupled to at least one of the channels, and a controller has a VGA loop, a crossbar loop, and a driver loop. The AGC loop receives a first reference voltage and provides a gain control signal to the input circuit, and the gain control network comprises a replica of at least one of the equalization paths. The crossbar loop receives a second reference voltage and provides a crossbar control signal to the crossbar. The driver loop receives a third reference voltage and provides a driver control signal for the output circuit.
摘要:
In the many microelectronics applications, delays present in circuitry can affect both the design and the function of the circuitry. One example of delays impacting the function of a circuit is a relaxation oscillator, where delays present in comparator circuits and latches can cause its frequency to vary beyond desired ranges. Here, a relaxation circuit with delay compensation is described.
摘要:
In the many microelectronics applications, delays present in circuitry can affect both the design and the function of the circuitry. One example of delays impacting the function of a circuit is a relaxation oscillator, where delays present in comparator circuits and latches can cause its frequency to vary beyond desired ranges. Here, a relaxation circuit with delay compensation is described.
摘要:
In bipolar CMOS or BiCMOS process technologies, drivers (such as mixed mode or hybrid mode drivers) using both bipolar and CMOS transistors (i.e., field effect transistors or FETs) may have undesirable properties, such as reduced speed, ringing, latch-up, or lower electrostatic discharge (ESD) performance. Here, a mixed or hybrid mode driver is provided that employs a current steering circuit (instead of voltages driven differential pair(s) as is done with conventional drivers) to generate pull-down currents that precisely match the voltages in the pull-up portions of driver. It increases the speed and produces smaller output common-mode voltage fluctuation over conventional drivers. Thus, the driver provided here can be produced in BiCMOS process technologies without the undesirable effects of conventional drivers.
摘要:
In bipolar CMOS or BiCMOS process technologies, drivers (such as mixed mode or hybrid mode drivers) using both bipolar and CMOS transistors (i.e., field effect transistors or FETs) may have undesirable properties, such as reduced speed, ringing, latch-up, or lower electrostatic discharge (ESD) performance. Here, a mixed or hybrid mode driver is provided that employs a current steering circuit (instead of voltages driven differential pair(s) as is done with conventional drivers) to generate pull-down currents that precisely match the voltages in the pull-up portions of driver. It increases the speed and produces smaller output common-mode voltage fluctuation over conventional drivers. Thus, the driver provided here can be produced in BiCMOS process technologies without the undesirable effects of conventional drivers.
摘要:
In versions 1.1a and 1.2 of the DISPLAYPORT™ standard, capacitors are used between a sourcing circuit and a switch for the auxiliary channel. As a result, these capacitors are generally uncharged when the switch activates the auxiliary channel, which can result in errors. Here, a switch is employed that uses precharge circuits to precharge these capacitors. Thus, errors due to charging of these capacitors can be reduced.
摘要:
In versions 1.1a and 1.2 of the DISPLAYPORT™ standard, capacitors are used between a sourcing circuit and a switch for the auxiliary channel. As a result, these capacitors are generally uncharged when the switch activates the auxiliary channel, which can result in errors. Here, a switch is employed that uses precharge circuits to precharge these capacitors. Thus, errors due to charging of these capacitors can be reduced.
摘要:
An apparatus is provided. The apparatus generally comprises a plurality of pairs of differential transmission lines. The plurality of pairs of differential transmission lines includes a set of pairs of differential transmission lines with each pair of differential transmission lines from the set of pairs of differential transmission lines including at least one twist to alternate current direction. Also, the plurality of differential transmission lines are arranged such that alternating current directions substantially eliminate cross-talk across the plurality of pairs of differential transmission lines.
摘要:
An apparatus for compensating operating current in an amplifier device when supply voltage to the amplifier device decreases below a predetermined value at an input voltage supply locus includes: (a) A first control circuit coupled with the input voltage supply locus. The first control circuit generates an output signal at an output locus when the supply voltage decreases below the predetermined value. (b) A second control circuit coupled with the output locus and coupled with the amplifier device. The second control circuit effects the compensating in response to the output signal.