摘要:
A ceramic member is provided including a base including an alumina sintered body, an yttria sintered body formed on the alumina sintered body, an intermediate layer including yttrium and aluminum formed between the alumina sintered body and the yttria sintered body, and a metallic member buried in the intermediate layer of the base. A difference between the thermal expansion coefficient of the alumina sintered body and that of the yttria sintered body is equal to or less than about 0.50×10−6/K, and the thermal expansion coefficient of the alumina sintered body is greater than the thermal expansion coefficient of the yttria sintered body. The alumina sintered body, the intermediate layer, the yttria sintered body, and the metallic member are formed into an integrated sintered body, and the content of yttria in the yttria sintered body is 99 wt % or more.
摘要:
A ceramic member comprises a base including an alumina sintered body, and an yttria sintered body formed on the alumina sintered body and exposed to a corrosive gas; and a metallic member buried in the base.
摘要:
A yttria sintered body is provided which includes yttria as a principal ingredient and 5 to 40 vol. % silicon nitride, and which exhibits enhanced corrosion resistance and mechanical strength.
摘要:
A yttria sintered body contains an amount of silicon carbide within a range of 5 to 40% by volume, has a volume resistivity at room temperature within a range of 1×101 to 1×1017Ω·cm, and is adapted for application to an electrostatic chuck.
摘要:
A yttria sintered body includes yttria as a principal ingredient, and 5 to 40% by volume of silicone nitride, allowing for an enhanced corrosion resistance and mechanical strength.
摘要:
A yttria sintered body contains an amount of silicon carbide within a range of 5 to 40% by volume, has a volume resistivity at room temperature within a range of 1×101 to 1×1017 Ω·cm, and is adapted for application to an electrostatic chuck.
摘要:
An electrostatic chuck includes a ceramic base having an electrode embedded in vicinity to a holding face for holding a substrate. On a back side of this ceramic base, provided are a terminal connected to the electrode, a wafer temperature control member, and an insulating member for insulating the temperature control member from the terminal. This insulating member has a flange portion on its end portion in contact with the ceramic base, and is made of highly thermal conductive ceramics.
摘要:
A base member made of a metal in which aluminum is included, ceramics in which an aluminum element is included, or a composition member constructed by a metal in which aluminum and ceramics are included, is provided in a container in which a solid fluorine compound such as NaHF2 is filled. Then, the container is heated at a temperature higher than a decomposition temperature of the solid fluorine compound. After that, the base member is subjected to a heat treatment with the decomposed gas of the solid fluorine compound to form a fluoride layer on a surface of the base member. In this manner, it is possible to obtain an anti-corrosion member which shows a high corrosion property with respect to the corrosion gas of halogen series and its plasma, particularly with respect to chlorine gas and its plasma.
摘要:
A substrate supporting member includes: a plate-shaped ceramic body having a surface serving as a substrate supporting surface; a plate-shaped composite material body which is joined to a surface of the ceramic body opposite to the substrate supporting surface with a joint material interposed therebetween and made of porous ceramic with pores filled with metal, the composite material body having a porosity of more than 0% and not more than 5%; and a metallic plate which is joined to a surface of the composite material body opposite to the surface joined to the ceramic body with a joint material interposed therebetween.
摘要:
A process is disclosed for producing a corrosion-resistant ceramic member, which process includes the steps of preparing a sintered body made of a ceramic material containing at least aluminum, immersing the ceramic sintered body in hydrofluoric acid, and forming a film of aluminum fluoride at a surface layer portion of the ceramic sintered body by heating the ceramic sintered body.