摘要:
There are provided driving electrodes (25) on walls (24) separating both sides of individual ink chambers (22) formed in the form of an array of multiple grooves. External circuit connecting electrodes (11) for connecting these driving electrodes (25) to an external circuit are formed on exposed surface regions of electrically conductive material (10) filled in the individual ink chambers (22) at a rear end portion of a head. Each of the aforesaid exposed surface regions has an area larger than the cross-sectional area of each ink chamber as measured along a direction perpendicular to the ink chamber array.
摘要:
There are provided driving electrodes (25) on walls (24) separating both sides of individual ink chambers (22) formed in the form of an array of multiple grooves. External circuit connecting electrodes (11) for connecting these driving electrodes (25) to an external circuit are formed on exposed surface regions of electrically conductive material (10) filled in the individual ink chambers (22) at a rear end portion of a head. Each of the aforesaid exposed surface regions has an area larger than the cross-sectional area of each ink chamber as measured along a direction perpendicular to the ink chamber array.
摘要:
In a droplet spray apparatus spraying out ink from an ink path by altering the volume of an ink channel formed in a trench that is covered with a cover plate and that has a conductive member provided at one end formed at a piezoelectric member, an ink supply opening to supply ink is provided at the end side where the conductive member is provided. Accordingly, an ink jet head that can be made compact, fabricated easily, and superior in productivity is obtained.
摘要:
A nozzle plate (8) of the present invention is arranged such that, between (i) a first nozzle layer (1) having a first nozzle hole (orifice) (11a) that discharges a liquid substance and (ii) a second nozzle layer (2) having a second nozzle hole (11b) that is connected to the first nozzle hole (11a) and receives the liquid substance, a blocking layer (3) having a higher resistance to etching than the first nozzle layer (1) is provided. In this nozzle plate (8), the blocking layer (3) is locally formed around a connecting part at which the first nozzle hole (11a) is connected to the second nozzle hole (11b). On account of this, the first nozzle hole of the nozzle plate is highly precisely formed, and the deformation of the nozzle plate, e.g. warpage, hardly occurs.
摘要:
A nozzle plate (8) of the present invention is arranged such that, between (i) a first nozzle layer (1) having a first nozzle hole (orifice) (11a) that discharges a liquid substance and (ii) a second nozzle layer (2) having a second nozzle hole (11b) that is connected to the first nozzle hole (11a) and receives the liquid substance, a blocking layer (3) having a higher resistance to etching than the first nozzle layer (1) is provided. In this nozzle plate (8), the blocking layer (3) is locally formed around a connecting part at which the first nozzle hole (11a) is connected to the second nozzle hole (11b). On account of this, the first nozzle hole of the nozzle plate is highly precisely formed, and the deformation of the nozzle plate, e.g. warpage, hardly occurs.
摘要:
A nozzle plate (8) of the present invention is arranged such that, between (i) a first nozzle layer (1) having a first nozzle hole (orifice) (11a) that discharges a liquid substance and (ii) a second nozzle layer (2) having a second nozzle hole (11b) that is connected to the first nozzle hole (11a) and receives the liquid substance, a blocking layer (3) having a higher resistance to etching than the first nozzle layer (1) is provided. In this nozzle plate (8), the blocking layer (3) is locally formed around a connecting part at which the first nozzle hole (11a) is connected to the second nozzle hole (11b). On account of this, the first nozzle hole of the nozzle plate is highly precisely formed, and the deformation of the nozzle plate, e.g. warpage, hardly occurs.
摘要:
An electrode connection structure between outer lead(s) of TCP(s), being first circuit board(s), and actuator member electrode(s) for connection to external circuitry, being second circuit board(s); actuator member(s) electrode(s) for connection to external circuitry being formed in or on floor(s) of recess(es) which is/are step(s) smaller in magnitude than thickness(es) of outer lead(s) protruding from polyimide substrate(s) of TCP(s); adhesive(s) having thickness(es) more or less equal to difference(s) between step(s) and thickness(es) of outer lead(s); and outer lead(s) being electrically and mechanically connected to electrode(s) for connection to external circuitry.
摘要:
An electrode connection structure between outer lead(s) of TCP(s), being first circuit board(s), and actuator member electrode(s) for connection to external circuitry, being second circuit board(s); actuator member(s) electrode(s) for connection to external circuitry being formed in or on floor(s) of recess(es) which is/are step(s) smaller in magnitude than thickness(es) of outer lead(s) protruding from polyimide substrate(s) of TCP(s); adhesive(s) having thickness(es) more or less equal to difference(s) between step(s) and thickness(es) of outer lead(s); and outer lead(s) being electrically and mechanically connected to electrode(s) for connection to external circuitry.
摘要:
A droplet applicator (1) includes a conveying stage (11) and beams (12). The conveying stage (11) holds a substrate (50) and can reciprocate in second directions, in which the substrate is conveyed. The beams (12) are substantially parallel to first directions perpendicular to the second directions. Each beam (12) is fitted with droplet discharge units (2), which face the substrate (50). Each droplet discharge unit (2) can be moved independently in the first directions within a range of movability by a slider (20).
摘要:
A polyimide solution is supplied to a wafer and the wafer is rotated by means of a spin chuck, thereby forming a polyimide film on the wafer. An irradiator for irradiating a laser beam to a peripheral portion of the wafer W is provided. After the polyimide film is formed and side rinse is performed, a laser beam is irradiated to the peripheral portion to solidify the film at the peripheral portion. The solidified polyimide film forms a weir, thus preventing the polyimide solution which has not dried yet from flowing out toward a peripheral edge portion.