摘要:
An information recording medium has an excellent jitter characteristic with a considerable difference in reflectance between prior to and subsequent to recording. The information recording medium includes a recording layer which contains a material having a reflectance which varies by irradiation of a light beam, on which information is recorded as reflectance variations, and a substrate for supporting the recording layer, the recording layer including a metal nitride as a major component. In a method of manufacturing the information recording medium having a recording layer which includes a material having a reflectance which varies by irradiation of a light beam, on which information is recorded as reflectance variations, and the substrate for supporting the recording layer, the recording layer including a metal nitride as a major component, the method includes a recording layer forming step for forming the recording layer by a reactive sputtering method which uses a target comprised of a metal constituting a metal nitride, wherein a flow ratio Ar:N2 in an atmosphere including Ar and N2 in the recording layer forming step is set within the range of 80:10 to 10:80.
摘要:
An information recording medium has an excellent jitter characteristic with a considerable difference in reflectance between prior to and subsequent to recording. The information recording medium includes a recording layer which contains a material having a reflectance which varies by irradiation of a light beam, on which information is recorded as reflectance variations, and a substrate for supporting the recording layer, the recording layer including a metal nitride as a major component. In a method of manufacturing the information recording medium having a recording layer which includes a material having a reflectance which varies by irradiation of a light beam, on which information is recorded as reflectance variations, and the substrate for supporting the recording layer, the recording layer including a metal nitride as a major component, the method includes a recording layer forming step for forming the recording layer by a reactive sputtering method which uses a target comprised of a metal constituting a metal nitride, wherein a flow ratio Ar:N2 in an atmosphere including Ar and N2 in the recording layer forming step is set within the range of 80:10 to 10:80.
摘要:
For address management of a nonvolatile memory, the whole logical address space is divided into logical address ranges (0 to 15), and the physical address space is divided into physical areas (segments (0 to 15)). The logical address ranges are respectively associated with the physical areas (segments) to manage the addresses. The sizes of the logical address ranges are equalized. The size of the physical area (segment (0)) corresponding to the logical address range (0) in which data of high rewrite frequency such as an FAT is expected to be stored is larger than those of the other physical areas, and the logical address ranges and the physical areas are allocated. Alternatively, the sizes of the physical areas are equalized, and the size of the logical address range (0) is set as a smaller one than those of the other logical address ranges. With this, the actual rewrite frequencies of the physical areas (segments) are equal to one another, and consequently the life of the nonvolatile memory can be prolonged.
摘要:
When a control unit (160) in a storage device (100) detects that a write end command or a data amount to be written has been transmitted from a host device (110), the control unit (160) saves control information required for writing data in a control information save memory (142). The control unit (160) also saves data which has not been written in storage medium into a buffer save memory (152) from a data buffer (151) and releases the busy state for the host device (110). The control unit (160) writes the saved data into a storage medium (120). Even if the power is turned OFF before completion of write, write can be performed into the storage medium (120) by using the saved data when the power is turned ON next time.
摘要:
In a storage having a nonvolatile RAM of destructive read type, the number of restorations attributed to data read from the nonvolatile RAM is decreased, and the overall life of the storage is prolonged. In a storage having a nonvolatile RAM of destructive read type and a volatile RAM and holding the same data in the nonvolatile and volatile RAMs, data is read out of the volatile RAM in reading and data is written in both volatile and nonvolatile RAMs in writing.
摘要:
A memory card (1) includes a host interface (2) that transmits and receives a command and data to and from the data processor (50), a nonvolatile memory (7) that stores data, a controller (3) that controls the operation of the memory card, and a storage section (32) that stores specified management information. The management information includes retry setting information which specifies whether a retry function is executed or not when an error occurs during an operation of writing data to the nonvolatile memory. The controller (3) refers to the retry setting information in the data writing operation, and controls the data writing operation so as to disable the retry function in the event of an error in the data writing operation, when the retry setting information indicates disabling of the retry function or to enable the retry function in the event of an error in the data writing operation, when the retry setting information indicates enabling of the retry function.
摘要:
A controller 102 and four flash memories F0 to F3 are connected by twos to two memory buses, and each flash memory is divided into two regions of substantially the same size to form a first half and a last half regions. In a four-memory configuration, a consecutive logical address specified by a host apparatus is divided into a predetermined size, and a write operation is performed in a format that repeatedly circulates through F0, F1, F2, F3 in this order. In a two-memory configuration, the write operation is performed in a format that repeatedly circulates through F00, F10, F01, F11. Thus, a controller processing is made common regardless of the number of flash memories connected to the controller.
摘要:
With nonvolatile memory device employing a nonvolatile memory such as multiple-valued NAND flash memory or the like in which each memory cell holds data in a plurality of pages, there is such a problem that, if an error occurred under writing data, data stored in other page in the same group of the current page is changed, and hence the object of the present invention is to solve this problem. In writing data into a nonvolatile memory 110, when error occurred under writing data into a certain page, an error page identification part 128 identifies an error type and a physical address of the page where error occurred. An error corrector 129 then corrects errors occurred in other pages belonging to the same group of error occurrence page.
摘要:
In a storage medium which has a number of areas, access to any area is controlled in accordance with whether or not access to another area is possible, and thereby, destruction of data due to malfunctioning or a wrong operation is prevented. A link control part which controls access to the second area based on the information on access to the first area is provided, and access to the second area is controlled on the basis of whether or not access to the first area is possible. Control becomes possible, such that access to the second area becomes impossible in the state where access to the first area is impossible, while access to the second area becomes possible in the case where access to the first area is possible.
摘要:
A read/write memory 109 is provided with a memory controller 110 so as to store address management information temporarily. A non-volatile memory access unit 106 writes user data on a non-volatile memory 111 according to a write instruction. When the user data is rewritten, an address management information controller 105 causes a physical block, which is an object to which the address management information 108 is rewritten, to be a to-be-invalid block. After completion of a series of writing process, the to-be-invalid block is turned into an invalid block and the address management information in the read/write memory 109 is rewritten on the non-volatile memory 111.