摘要:
To provide a method for producing a polymer, which contains: bringing a ring-opening polymerizable monomer containing an amide bond, and a compressive fluid into contact with each other to melt or dissolve the ring-opening polymerizable monomer containing an amide bond, followed by allowing the ring-opening polymerizable monomer containing an amide bond to react through ring-opening polymerization in the presence of a basic organic metal catalyst and a cocatalyst, to thereby obtain a polymer product.
摘要:
A polymer production apparatus, including: supplying unit containing first supplying unit to supply raw materials containing monomer, and second supplying unit to supply compressive fluid; contacting unit to bring the monomer and the compressive fluid into contact together; and outlet configured to discharge reaction product of the monomer, wherein reaction unit is provided between the contacting unit and the outlet, where the reaction unit is to pass the monomer from the contacting unit side to the outlet side, while allowing the monomer to carry out a polymerization reaction in the presence of the compressive fluid, and wherein the reaction unit contains circulation unit containing first pipe and second pipe, where a fluid is passed through the first pipe from the contacting unit side to the outlet side, and the second pipe is to return the fluid from return port provided upstream extrusion unit to inlet provided upstream the return port.
摘要:
To provide a polymer product, which contains aliphatic polycarbonate, wherein an oxide unit content in the aliphatic polycarbonate is 20 mol % or less, and wherein a monomer content in the aliphatic polycarbonate is 500 ppm or less, where the monomer is a monomer that is a base of the aliphatic polycarbonate.
摘要:
To provide a method for producing a polymer, which contains: bringing an intermediate polymer, which has been obtained through ring-opening polymerization of a ring-opening polymerizable monomer, into contact with, and melting the intermediate polymer in a compressive fluid having a density of 230 kg/m3 or greater, at temperature lower than a melting point of the intermediate polymer, at a ratio of 0.05 to 10, to dissolve a low-molecular-weight compound contained in the intermediate polymer in the compressive fluid, to thereby extract the low-molecular-weight compound, wherein the ratio is a ratio of a mass of the intermediate polymer to a mass of the compressive fluid.
摘要翻译:提供一种制备聚合物的方法,其包括:将通过开环聚合单体的开环聚合获得的中间体聚合物与具有密度的压缩流体接触并熔融中间聚合物 在低于中间体聚合物的熔点的温度下,以0.05〜10的比例溶解230kg / m 3以上,以将包含在中间聚合物中的低分子量化合物溶解在压缩流体中,从而提取 低分子量化合物,其中该比例是中间聚合物的质量与压缩流体质量的比率。
摘要:
A particulate polyamide is provided. The particulate polyamide is porous and includes at least one of polyamide 4 and polyamide 3. In addition, the particulate polyamide has a particle diameter (d50) of from 10 μm to 1,000 μm and a particle diameter dispersion degree (Dv/Dn) of not greater than 3.0, wherein Dv represents the volume average particle diameter of the particulate polyamide, and Dn represents the number average particle diameter of the particulate polyamide.
摘要:
An image forming apparatus includes an image bearer, a developing unit configured to develop a latent image formed on the image bearer with a toner to form a toner image, and a transfer member including a contact area that comes in contact with the image bearer. The toner image is primary transferred from the image bearer to the transfer member. A speed difference between the image bearer and the transfer member at the contact area is 0.1% or greater but 0.8% or less. The toner has an average circularity of 0.971 or greater but 0.986 or less and a shape factor SF-2 of 110 or greater but 119 or less. The speed difference is represented by the following formula: Speed difference [%]={(V1−V2)/V2}×100 [Speed difference] where V1 is a linear speed of the image bearer, and V2 is a linear speed of the transfer member.
摘要:
A toner is provided. The toner contains a polyester resin. The toner has a glass transition temperature (Tg1st) at first temperature rising of differential scanning calorimetry (DSC) of from 45° C. to 65° C. The toner includes a component insoluble in tetrahydrofuran (THF) having two glass transition temperatures (Tga1st and Tgb1st) at the first temperature rising of DSC, where Tga1st is in a range of −45° C. to 5° C. and Tgb1st is in a range of 45° C. to 70° C. The toner includes a component soluble in THF having a glass transition temperature (Tg2nd) at second temperature rising of DSC of from 40° C. to 65° C.
摘要:
The present disclosure provides a toner having excellent low-temperature fixing, heat-resistant-storage property, cleaning performance, and filming resistance. A toner containing toner base particles having a crystalline polyester resin and an amorphous polyester resin includes a plurality of organic particles disposed at least partially embedded in a surface of the toner base particles. A percentage of the crystalline polyester resin occupying the surface of the toner base particles is 4% to 20%, a volume average particle size of the organic particles is 10 nm to 40 nm, and a standard deviation of a distance between adjacent particles of the organic particles that are not in contact is 500 nm or less.
摘要:
A toner includes toner base and an external additive containing silica. The toner base includes binder resin, colorant, release agent, and modified layered inorganic mineral that is obtained by modifying, with an organic ion, part of ions between layers in layered inorganic mineral. An amount of the modified layered inorganic mineral is 0.1 parts by mass or more and less than 1.4 parts by mass relative to 100 parts by mass of the toner. Liberation ratio A (% by mass) of silica from the toner satisfies relation (1): 0.5≤A≤1.0. The binder resin includes a component insoluble in THF and a component soluble in THF. The component insoluble in THF has two glass transition temperatures of Tga1st and Tgb1st at first temperature rise in DSC. The Tga1st is −40° C. or more and 10° C. or less. The Tgb1st is 45° C. or more and 65° C. or less.