摘要:
This invention provides a method of screening or patterning a biomaterial in terms of their specificities to sugar chains by performing real-time and comprehensive measurement of an interaction between sugar chains and the biomaterial concurrently with a very small amount of the biomaterial without labeling. It is a method of measuring an interaction between a biomaterial and a sugar chain(s), the method including: bringing a solution containing the biomaterial in contact with a ligand carrier, the ligand carrier including a support whose surface includes a metal, and a ligand conjugate(s) immobilized independently on the surface, the ligand carrier carrying the ligand conjugate(s) in such a manner that 1 to 500 kinds of the ligand conjugate(s) is immobilized per cm2, and each ligand conjugate having a structure in which a sugar chain is bonded with a linker compound having a sulfur atom, and the biomaterial being at least one selected from the groups of proteins, viruses, cells, microorganisms, liposome, and micelles.
摘要:
This invention provides a method of screening or patterning a biomaterial in terms of their specificities to sugar chains by performing real-time and comprehensive measurement of an interaction between sugar chains and the biomaterial concurrently with a very small amount of the biomaterial without labeling. It is a method of measuring an interaction between a biomaterial and a sugar chain(s), the method including: bringing a solution containing the biomaterial in contact with a ligand carrier, the ligand carrier including a support whose surface includes a metal, and a ligand conjugate(s) immobilized independently on the surface, the ligand carrier carrying the ligand conjugate(s) in such a manner that 1 to 500 kinds of the ligand conjugate(s) is immobilized per cm2, and each ligand conjugate having a structure in which a sugar chain is bonded with a linker compound having a sulfur atom, and the biomaterial being at least one selected from the groups of proteins, viruses, cells, microorganisms, liposome, and micelles.
摘要:
A method for concentrating viruses includes applying a magnetic force to a mixture containing: sugar chain-immobilized magnetic metal nano-particles each having a structure in which a sugar chain-immobilized metal nano-particle is bound to a first magnetic nano-particle; second magnetic particles with mean particle size larger than that of the sugar chain-immobilized magnetic metal nano-particles; and a specimen. Each sugar chain-immobilized metal nano-particle has a structure where a ligand-conjugate is bound to a metal nano-particle via sulfur atoms. The ligand-conjugate has a structure where a linker compound's amino group is connected to a sugar chain having a reducing terminal. The linker compound includes, in molecules thereof, an amino group, sulfur atoms, and a hydrocarbon chain having carbon-nitrogen bonds. This allows short-time concentration of viruses in a sufficient amount almost equal to that of centrifugation concentration, allowing safely and effectively concentrating target viruses, resulting in prompt, easy, and highly sensitive detection and identification of viruses.
摘要:
The present invention provides a novel linker compound which minimizes any nonspecific hydrophobic interactions and is capable of easily adjusting the length to a disulfide group subjected to metal bond to thereby enable effective formation of a metal-sulfur bond; novel ligand conjugate and ligand carrier, and a process for producing them. The linker compound is of a structure represented by the following general formula (1) where a, b, d, e are independently an integer of 0 to 6. X has a structure serving as a multi-branched structure moiety including three or more hydrocarbon derivative chains, wherein the hydrocarbon derivative chains each include an aromatic amino group at an end thereof, and may or may not include a carbon-nitrogen bond in a main chain thereof. The ligand conjugate includes the linker compound having a sugar molecule introduced therein.
摘要:
A method for concentrating viruses includes applying a magnetic force to a mixture containing: sugar chain-immobilized magnetic metal nano-particles each having a structure in which a sugar chain-immobilized metal nano-particle is bound to a first magnetic nano-particle; second magnetic particles with mean particle size larger than that of the sugar chain-immobilized magnetic metal nano-particles; and a specimen. Each sugar chain-immobilized metal nano-particle has a structure where a ligand-conjugate is bound to a metal nano-particle via sulfur atoms. The ligand-conjugate has a structure where a linker compound's amino group is connected to a sugar chain having a reducing terminal. The linker compound includes, in molecules thereof, an amino group, sulfur atoms, and a hydrocarbon chain having carbon-nitrogen bonds. This allows short-time concentration of viruses in a sufficient amount almost equal to that of centrifugation concentration, allowing safely and effectively concentrating target viruses, resulting in prompt, easy, and highly sensitive detection and identification of viruses.
摘要:
The present invention provides a novel linker compound which minimizes any nonspecific hydrophobic interactions and is capable of easily adjusting the length to a disulfide group subjected to metal bond to thereby enable effective formation of a metal-sulfur bond; novel ligand conjugate and ligand carrier, and a process for producing them. The linker compound is of a structure represented by the following general formula (1) where a, b, d, e are independently an integer of 0 to 6. X has a structure serving as a multi-branched structure moiety including three or more hydrocarbon derivative chains, wherein the hydrocarbon derivative chains each include an aromatic amino group at an end thereof, and may or may not include a carbon-nitrogen bond in a main chain thereof. The ligand conjugate includes the linker compound having a sugar molecule introduced therein.